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We consider a predator-prey model with dissimilar functional and numerical
responses that induce an Allee effect. There is a time lag between consump-
tion and digestion of prey biomass by predator. Hence, a time delay has been
incorporated in the numerical response function. The system consists of two
interior equilibria. Taking time delay as the bifurcation parameter, four different
dynamic behaviors appear, viz., (R1) system undergoes no change in its stability
for all time delay, (R2) system undergoes stability change, (R3) system undergoes
stability switching, and (R4) system undergoes instability switching. Here, find-
ing four distinct dynamics in a single population model with only one delay is
a novelty in this contribution. This variation in dynamics emerges due to asym-
metricity in functional and numerical responses. All the relevant theorems in
establishing stability are provided, and these are verified numerically. We ana-
lytically prove that if an interior equilibrium is a saddle point in absence of time
delay, then the equilibrium cannot be stabilized by varying the time delay. It is
popularly believed that existence of two distinct pair of purely imaginary roots
of the characteristic function leads to stability switching. However, we provide
examples where the system remains unstable, stability changes, and instability
switching occurs. This is another new and interesting observation in our work.
The numerical examples are furnished with phase portraits, time series plots,
bifurcation diagrams, and eigenvalues evaluation with delay, for better under-
standing. Our model with a single delay exhibits variety of dynamics, which were
not explored before.
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1 INTRODUCTION

Numerous mathematical models of population dynamics have been developed by researchers across the world to analyze
the various behaviors that the species can portray in the environment. Several literature have studied the factors that
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impacted the dynamic behavior of predator and prey in nature. It has been established that the stability of predator-prey
models is effected by Allee effect,1,2 predator interferance,3 foraging facilitation,4 population harvesting,5 fear effect,6
presence of intra-specific competition,7 time delays,8–10 etc.

Time delays in any predator-prey model are incorporated due to various factors like delays in growth of the species
due to its gestation and maturation,11,12 delay in consumption of prey by predator,13,14 delay in dispersal from one
patch to another,15 etc. Time delays largely affect the stability of ecological models. For instance, Collera16 has stud-
ied an intraguild predator-prey system with time delay in the logistic growth of basal resource. He concluded that time
delay has a destabilizing nature. Similar conclusion was derived by Rabago and Collera17 in their delayed intraguild
predator-prey model. Zhang et al.18 have considered a predator-prey model where time delay is due to the gestation
of predator. They found that periodic solutions are possible when time delay is varied, i.e., predator coexists with the
prey in an oscillatory mode. A three time delayed predator-prey model was discussed by Jiang and Wang.19 They proved
the existence of global periodic solutions. Lately, Pati and Ghosh20 have studied a predator-prey model with a single
time delay in the logistic growth of prey. They inferred possibility of three types of stability scenarios at the coex-
isting equilibrium, viz., no change in stability, stability change from stable to unstable, and stability switching. They
also detected the existence of delay induced supercritical, subcritical, and non-degenerate Hopf bifurcations around
the interior equilibrium. Singh et al.21 have studied a predator-prey model with two discrete time delays in the logis-
tic term of prey and the numerical response of predator. Various possible dynamics including switching of stability
and existence of limit cycles are shown to occur for the system. The case of bistability also exists in predator-prey
model when time delay is incorporated in the fear effect of prey due to predator.22 Kumar and Sharma23 have con-
sidered a population model of senior players and new players in any sports. They proved that time delay due to age
gap of the players in the intra-specific competition among the players can destabilize even a globally stable interior
equilibrium.

Another factor that effects the predator-prey dynamics greatly is the Allee effect arising due to reasons like increase
in predation, social dysfunction, etc. Allee effects may be defined by the positive correlation between per capita growth
rate of a population and small population sizes. Allee effects are categorized as strong and weak Allee effects. In case of
strong Allee effect, the population could become extinct if the initial species density is below a threshold level. However,
the weak Allee effect does not induce species extinction, but the dynamic solutions take relatively longer time to reach
the positive equilibrium state. A comprehensive study could be found in Drake and Kramer.24 Several impacts due to
presence of Allee effect are explained by Zu and Mimura.25 They reported that when Allee effect of prey species is strong,
it can lead to extinction of prey and predator. It can even induce unstable periodic oscillation in the system. The combined
impacts of both time delays and Allee effects are studied worldwide to understand the dynamics both the factors display.
A delayed model of predator and prey (with Allee effect) has been investigated by Anacleto and Vidal26 to show the
existence of stability switching analytically and establish the direction of Hopf-bifurcation with respect to time delay.
They have found that the delay due to the gestation period can be effected by Allee effect, leading to a stability switching
around the coexisting equilibrium. Xiao et al.27 have incorporated time delay in the numerical response of predator and
an Allee effect in the logistic growth of prey. They found that the system undergoes Hopf bifurcation, when time delay
is the bifurcation parameter. They also determined that both the species become extinct due to larger Allee effect. On
the other hand, in the predator-prey model by Anacleto and Vidal,26 the growth term of the prey is effected by both time
delay due to maturation as well as by Allee effect. It was observed that Allee effect plays an important role in the existence
of positive eqilibria. Stability change and stability switching occur as a consequence of time delay. Usually in the above
mentioned literature, it is found that Allee effect and time delays are destabilizing in nature. However, it is not always the
case. Vinoth et al.28 have shown the stabilizing nature of Allee effect and gestation delay in a tri-trophic food chain model.
Tao and Zhu29 have considered a diffusion-reaction predator-prey model with time delay and Allee effect. They found
that the time delay and Allee effect have a potential role to play in the formation of Turing pattern. Thus, we can draw
to a conclusion that in all the literature, factors like the Allee effect and time delay play a significant role in changing the
system dynamics.

In this contribution, we report a class of new dynamics that arises in a predator-prey model under the combined effect
of time delay and Allee effect. In the next section, we detail our motivation for studying the research theme and model
selection. In the succeeding section, the positivity and boundedness of the proposed model are discussed. In Section 4,
stability analysis of the system is investigated corresponding to the equilibria. Several analytical theory along with numer-
ical examples are presented, and their validations are performed. Final section presents the summary of the study and
future research perspective.
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2 MOTIVATION AND MODEL FORMULATION

Wangersky and Cunningham30 were the pioneer to have introduced time lag in the predation process in a Lotka-Voltera
type predator-prey model with finite carrying capacity for prey. They found that the solution of the predator-prey model
depends upon the time delay parameter. The same Wangersky-Cunningham (WC) predator-prey model subjected to
constant-rate prey harvesting was studied by Martin and Ruan.31 They considered the WC model, which is equivalent to
the following system:

.x(t) = rx(t)
(

1 − x(t)
K

)
− 𝛼x(t)𝑦(t) − H,

.
𝑦(t) = 𝛽x(t − 𝜏)𝑦(t − 𝜏) − m𝑦(t),

(1)

where x(𝜃) > 0, 𝑦(𝜃) > 0 and are continuous on 𝜃 ∈ [−𝜏, 0]. Here, x(t) and 𝑦(t) are the prey and predator population
biomass, respectively, at time t. The time delay 𝜏 is incorporated in the predator numerical response. Here, r denotes the
intrinsic growth rate of the prey, and K is the carrying capacity of the prey. The attack rate during predation is denoted
by 𝛼 and 𝛽 = 𝛼a, where a is conversion coefficient of prey biomass into predator. We define m as the specific mortality
rate of predator, and H is the constant-rate harvesting of the prey. Martin and Ruan31 reported three types of dynamics
for the system (1) when time delay increases, viz., (R1): The system remains stable for all time delay 𝜏; (R2): A stable
equilibrium in the system becomes unstable for increase in time delay and cannot change its stability; and (R3): The
system experiences a finite number of stability switching. The first two results (R1) and (R2) are verified numerically
by Martin and Ruan,31 but validity of (R3) is neither proved analytically nor numerically. This rises a question whether
switching of stability is exhibited in their model.

Very interestingly, Toaha32 also considered the Wangersky-Cunningham (WC) model linked with linear harvesting
term, which is similar to

.x(t) = rx(t)
(

1 − x(t)
K

)
− 𝛼x(t)𝑦(t) − Ex(t),

.
𝑦(t) = 𝛽x(t − 𝜏)𝑦(t − 𝜏) − m𝑦(t) − E𝑦(t),

(2)

where E is the combined (equal) harvesting effort. He established that two distinct dynamics, viz., (R1) and (R2) hold in
the WC model. Analytically, it was proved that the third result (R3) is impossible to occur.

Recently, Barman and Ghosh7 have also found that the first two dynamical behaviors (R1-R2) are possible in a
class of four predator-prey models, when time delay is incorporated in the numerical response. They have analytically
proved that the first result (R1) is possible only when the intra-specific competition is present among predators; oth-
erwise, a stability change must happen for increasing delay. This leads to a question if the intra-specific competition
induces stability switching in other population dynamics models. It motivates us to study WC model incorporating
intra-specific competition among predators. We first consider the WC model with intra-specific competition in predator,
which reads as

.x(t) = rx(t)
(

1 − x(t)
K

)
− 𝛼x(t)𝑦(t),

.
𝑦(t) = 𝛽x(t − 𝜏)𝑦(t − 𝜏) − m𝑦(t) − 𝛾𝑦2(t),

(3)

where 𝛾 is the intra-specific competition coefficient. The stability analysis of the system (3) in the presence of intra-specific
competition is supplied in Appendix A1. Our analytical results report that switching of stability (R3) does not occur. It is
found that intra-specific competition has no role in inducing stability switching. The dynamical behaviors of system (3)
are on par with the outcomes of system (2) studied by Toaha.32

Li and Takeuchi14 have studied a predator-prey model with Beddington-DeAngelis functional response and
intra-specific competition among predators. The delay was incorporated in the predator response term. They discussed
the parameteric conditions under which all three results (R1–R3) hold. On the other hand, Ye et al.33 have considered a
predator-prey model with weak Allee effect in prey growth and incorporated searching as well as digestion delay in their
interaction terms. It is found that results (R1–R3) hold true in their model when both the delay terms are non-zero. When
one of the delay is zero, the first two results (R1–R2) hold true. Therefore, based on the above studies, it is clear that
switching does not exhibit for a single delay in predation process in predator-prey system. Also, no situations occurred
where all the three cases (R1–R3) are validated when the single time delay 𝜏 is the bifurcating parameter. This motivates
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us to investigate for the existence of a predator-prey system which exhibits all the possible dynamics, viz., (R1–R3). Fur-
ther, we also want to examine the validity of (R4): an unstable equilibrium changes its stability and regains its instability,
i.e., whether instability switching arises in the same system due to increase in delay. Thus, we consider a predator-prey
model with Holling type I functional response subject to Allee effect in the predator as follows:

.x(t) = rx(t)
(

1 − x(t)
K

)
− 𝛼x(t)𝑦(t),

.
𝑦(t) = 𝛽x(t − 𝜏)𝑦(t − 𝜏)

(
𝑦(t − 𝜏)

C + 𝑦(t − 𝜏)

)
− m𝑦(t) − 𝛾𝑦2(t),

(4)

where C is the Allee effect constant. The functional response represents the consumption of the prey biomass by predator.
However, the digestion of the prey biomass by the predator is not instanteneous. It takes some time. Henceforth, a delay
𝜏 has been incorporated in the numerical response, which depends on the previous prey and predator biomass at time
(t − 𝜏). We have considered the same delay 𝜏 in the numerical response 𝛽x(t − 𝜏)𝑦(t − 𝜏) 𝑦(t−𝜏)

C+𝑦(t−𝜏)
. The representation of

same 𝜏 in our model is influenced by the delayed Gause-type predator-prey model (System 1.4) in Martin and Ruan.31 The
change rate of the predator population depends on the number of prey and of predators existing at some previous time.
Note that the functional response and numerical response are not proportional to each other due to the presence of Allee
effect. It can be seen that in absence of the Allee effect constant C, system (4) turns into system (3). Zhou et al.34 have
incorporated similar Allee effect terms in the predator population of the classical Lotka-Volterra predator-prey model. It
was observed that the dynamics of the Lotka-Volterra model changes from neutrally stable mode to unstable mode due
to the Allee effect in the predator. The larger Allee effect constant slows down the growth rate of the predator. In Verdy,1
the Allee effect was found to modulate the predation rate. Bajeux et al.35 have discussed about biological control tactics in
a predator-prey model in which two component Allee effects are present, viz., foraging efficiency and reproductive Allee
effects. Costa and dos Anjos36 have incorporated reproductive Allee effect in the Rosenzweig-MacArthur predator-prey
model with intra-specific competition among predators. Bistability and Hydra effect in the system were observed when
mortality rate increased. We incorporate an Allee effect among predators' numerical response considered by Zhou et al.,34

Bajeux et al.,35 and Costa et al.37 to examine whether all the delay induced dynamics (R1–R4) are observed.

3 POSITIVITY AND BOUNDEDNESS

Before proceeding to investigate the validness of the results R1–R4 for (4), we first verify the positivity and boundedness
of its solutions.

Theorem 3.1. The solutions of system (4) are positive for t > 0 with given initial conditions x(𝜃) > 0, 𝑦(𝜃) >

0, where 𝜃 ∈ [−𝜏, 0].

Proof. We need to show that for any time t > 0, x(t) > 0, and 𝑦(t) > 0. Let us first show that x(t) > 0. The solution of
the first equation of system (4) can be written as

x(t) = x(0)e∫
t

0

{
r− rx(s)

K
−𝛼𝑦(s)

}
ds
> 0.

Now, for t > 0, we show that 𝑦(t) > 0. Suppose that there exists a time t = t1 > 0 such that 𝑦(t1) = 0 and 𝑦(t) > 0 for
t ∈ [0, t1). Then, for t ∈ (0, t1), x(t − 𝜏) > 0, and 𝑦(t − 𝜏) > 0. Hence,

.
𝑦(t) > −m𝑦(t) − 𝛾𝑦2(t), t ∈ (0, t1).

So by standard comparison theorem, we can write

𝑦(t) > 𝑦(0)e∫
t

0 {−m−𝛾𝑦(s)}ds.
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Since 𝑦(t) is continuous on [0, t1), there exists Y > 0 such that 𝑦(t) < Y for t ∈ [0, t1]. Thus,

𝑦(t) > 𝑦(0)e∫
t

0 {−m−𝛾Y}ds for t ∈ [0, t1).

This implies 𝑦(t1) > 0, as 𝑦(t) is continuous on [0, t1], which is a contradiction to the fact that 𝑦(t1) = 0. Thus, the prey
and predator populations remain positive for all time. □

Second, we establish that the prey and predator populations are bounded for all time.

Theorem 3.2. The solutions of system (4) are bounded for t > 0 with given initial conditions x(𝜃) > 0, 𝑦(𝜃) >

0, where 𝜃 ∈ [−𝜏, 0].

Proof. Since x(t) > 0, ∀ t > 0, we can write

.x(t) ≤ rx(t)(1 − x(t)∕K).

This signifies that

lim
t→+∞

sup x(t) ≤ K.

This implies, for any 𝜖 > 0, there exists T > 0 such that 0 < x(t) ≤ K + 𝜖 for t ≥ T. Thus, for t ≥ T, we get

𝛽
.x(t) + 𝛼

.
𝑦(t + 𝜏) = r𝛽x(t)(1 − x(t)∕K) − m𝛼𝑦(t + 𝜏)

+ 𝛼𝛽x(t)𝑦(t)
(

𝑦(t)
C + 𝑦(t)

)
− 𝛼𝛽x(t)𝑦(t) − 𝛾𝛼𝑦2(t + 𝜏)

≤ r 𝛽
K

x(t)(K − x(t)) − m𝛼𝑦(t + 𝜏)

≤
r𝛽K

4
+ 𝛽m(K + 𝜖) − 𝛽mx(t) − m𝛼𝑦(t + 𝜏)[

since x(t)(K − x(t)) ≤ K2

4

]
= r𝛽K

4
+ 𝛽m(K + 𝜖) − m {𝛽x(t) + 𝛼𝑦(t + 𝜏)} .

For 𝜖 arbitrarily small, lim
t→+∞

sup {𝛽x(t) + 𝛼𝑦(t + 𝜏)} ≤ r𝛽K
4m

+ 𝛽K = M. Henceforth, lim
t→+∞

sup 𝑦(t) ≤ M∕𝛼. □

4 MODEL ANALYSIS

In this section, at first, the equilibrium points of system (4) are determined. The trivial equilibrium (0, 0) and boundary
equilibrium (K, 0) always exist for system (4). We now analyze the existence of interior steady state (x∗, 𝑦∗). The interior
equilibrium must satisfy the equations:

r
(

1 − x∗
K

)
− 𝛼𝑦∗ = 0, (5)

𝛽x∗
(

𝑦∗

C + 𝑦∗

)
− m − 𝛾𝑦∗ = 0. (6)

From equations (5) and (6) we get,
x∗ = K

r
(r − 𝛼𝑦∗), (7)

and

𝑦∗ =
(𝛽K − m − 𝛾C) ±

√
(𝛽K − m − 𝛾C)2 − 4mC

(
𝛽K𝛼

r
+ 𝛾

)
2
(

𝛽K𝛼

r
+ 𝛾

) . (8)
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When both C = 𝛾 = 0, the unique interior equilibrium of the WC model is given as (x∗, 𝑦∗) =
(

m
𝛽
,

r(𝛽K−m)
𝛽K𝛼

)
, provided

𝛽K > m.
In absence of C, the interior equilibrium of system (4) is given as (x∗, 𝑦∗) =

(
K − K𝛼

𝛽K−m
𝛽K𝛼+𝛾r

,
r(𝛽K−m)
𝛽K𝛼+𝛾r

)
, provided 𝛽K > m.

Therefore, the interior equilibrium of system (4) with C = 0 is always unique if it exists.
However, when C > 0, either there exists no interior equilibrium or two interior equilibria (x∗1 , 𝑦

∗
1) and (x∗2 , 𝑦

∗
2) exist only

when 𝛽K − 𝛾C > m and (𝛽K − m − 𝛾C)2 > 4mC
(

𝛽K𝛼

r
+ 𝛾

)
, where

x∗1 = K
r
(r − 𝛼𝑦∗1),

𝑦∗1 =
(𝛽K − m − 𝛾C) +

√
(𝛽K − m − 𝛾C)2 − 4mC

(
𝛽K𝛼

r
+ 𝛾

)
2
(

𝛽K𝛼

r
+ 𝛾

) ,

x∗2 = K
r
(r − 𝛼𝑦∗2),

and

𝑦∗2 =
(𝛽K − m − 𝛾C) −

√
(𝛽K − m − 𝛾C)2 − 4mC

(
𝛽K𝛼

r
+ 𝛾

)
2
(

𝛽K𝛼

r
+ 𝛾

) .

Now, we want to study the stability behavior of system (4) with respect to time delay.
The Jacobians J0 and J𝜏 for system (4) corresponding to the interior equilibrium (x∗, 𝑦∗) are

J0 =
[

r − 2rx∗

K
− 𝛼𝑦∗ −𝛼x∗

0 −m − 2𝛾𝑦∗

]
and

J𝜏 =

[
0 0

𝛽𝑦∗
(

𝑦∗

𝑦∗+C

)
𝛽x∗

(
𝑦∗

𝑦∗+C
+ 𝑦∗C

(𝑦∗+C)2

) ]
.

The characteristic equation corresponding to the linearized system of (4) is given as

det
(

J0 + J𝜏e−𝜆𝜏 − 𝜆I
)
= 0

⇒

||||||
− rx∗

K
− 𝜆 −𝛼x∗

𝛽𝑦∗
(

𝑦∗

𝑦∗+C

)
e−𝜆𝜏 −(m + 2𝛾𝑦∗) + 𝛽x∗

(
𝑦∗(𝑦∗+2C)
(𝑦∗+C)2

)
e−𝜆𝜏 − 𝜆

|||||| = 0

⇒ 𝜆2 +
( rx∗

K
+ m + 2𝛾𝑦∗

)
𝜆 −

(
𝛽x∗ (𝑦

∗)2 + 2C𝑦∗

(𝑦∗ + C)2

)
𝜆e−𝜆𝜏+(

− rx∗
K

𝛽x∗ (𝑦
∗)2 + 2C𝑦∗

(𝑦∗ + C)2 + 𝛼𝛽x∗𝑦∗ 𝑦∗

𝑦∗ + C

)
e−𝜆𝜏 + rx∗ m + 2𝛾𝑦∗

K
= 0.

(9)

The characteristic equation can be further written as

𝜆2 + a1𝜆 + a2𝜆e−𝜆𝜏 + a3 + a4e−𝜆𝜏 = 0, (10)
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where

a1 = rx∗
K

+ m + 2𝛾𝑦∗,

a2 = −𝛽x∗ (𝑦
∗)2 + 2C𝑦∗

(𝑦∗ + C)2 ,

a3 = r x∗
K
(m + 2𝛾𝑦∗),

a4 = −r𝛽x∗ x∗
K

(𝑦∗)2 + 2C𝑦∗

(𝑦∗ + C)2 + 𝛼𝛽x∗ (𝑦∗)2

(𝑦∗ + C)
.

Note that the left side expression of characteristic equation (10) is the characteristic function. We first discuss the
stability of the trivial equilibrium.

Result 4.1. We find that irrespective of the value of 𝜏 , the trivial equilibrium have two roots of the characterictic function
viz. r and −1. Thus, the trivial equilibrium is a saddle point (unstable).

The stability of boundary equilibrium is discussed below:

Result 4.2. The boundary equilibrium is locally stable for all 𝜏 since the characteristic function yields two negative roots
−r and −m at the boundary equilibrium, independent of the value of 𝜏 .

Now, we prove if this locally stable boundary equilibrium is globally stable under certain parameter condition.

Theorem 4.1. The boundary equilibrium (K, 0) is globally asymptotically stable whenever 𝛽K < m.

Proof. We have proved that the solutions of system (4) are positive and bounded.
Hence,

lim
t→+∞

sup x(t) ≤ K.

So, for any positive 𝜖, sufficiently small, there exists a T = T(𝜖) such that for t > T,

x(t) ≤ K + 𝜖.

This shows that for t > T + 𝜏,

.
𝑦(t) ≤ 𝑦(t − 𝜏)𝛽(K + 𝜖) 𝑦(t − 𝜏)

C + 𝑦(t − 𝜏)
− m𝑦(t)

≤ 𝑦(t − 𝜏)𝛽(K + 𝜖) − m𝑦(t)
[

since 𝑦(t − 𝜏)
C + 𝑦(t − 𝜏)

≤ 1
]
.

Thus, lim
t→+∞

𝑦(t) = 0 whenever 𝛽(K + 𝜖) < m (Lemma 4 of Shu et al.38). Now, for any 𝛿 > 0, there exists a T(𝛿) > 0
such that we have

.x(t) ≥ x(t)
(

1 − x(t)
K

− 𝛼𝛿

)
,

which implies that lim
t→+∞

inf x(t) ≥ K. Since lim
t→+∞

sup x(t) ≤ K, thus lim
t→+∞

x(t) = K.39 , Proposition 1 Thus, (K, 0) is globally
asymptotically stable equilibrium point when 𝛽K < m. □

Now, we discuss the stability of the interior equilibria. For 𝜏 = 0, the characteristic equation (10) reduces to

𝜆2 + (a1 + a2)𝜆 + (a3 + a4) = 0. (11)

It is noticed from the characteristic equation (11) that in absence of delay, i.e., when 𝜏 = 0, interior equilibrium E =
(x∗, 𝑦∗) is

1. locally stable (stable focus or node) if a1 + a2 > 0 and a3 + a4 > 0,
2. unstable (focus or node) if a1 + a2 < 0 and a3 + a4 > 0,
3. saddle point if a1 + a2 > 0 and a3 + a4 < 0.
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In order to verify the change of stability in system (4), with time delay 𝜏 as the bifurcation parameter, there must exist
a pair of eigenvalues 𝜆 = ±i𝜔, (𝜔 > 0) of the characteristic equation (10). Now, substituting 𝜆 = i𝜔 in equation (10) and
separating the real and imaginary parts, we obtain

−𝜔2 + a2𝜔 sin𝜔𝜏 + a4 cos𝜔𝜏 + a3 = 0, (12)

a1𝜔 + a2𝜔 cos𝜔𝜏 − a4 sin𝜔𝜏 = 0. (13)

After eliminating 𝜏 from equations (12) and (13), we get

(𝜔2 − a3)2 + a2
1𝜔

2 = a2
2𝜔

2 + a2
4,

which can be simplified as
𝜔4 + (a2

1 − a2
2 − 2a3)𝜔2 − a2

4 + a2
3 = 0. (14)

The roots of equation (14) are

𝜔2 = 1
2
(a2

2 − a2
1 + 2a3) ±

1
2
[
(a2

2 − a2
1 + 2a3)2 − 4(a2

3 − a2
4)
]1∕2

. (15)

We analyze the stability behavior of system (4) based on the roots of equation (14). From the right-side expression of
equation (15), we obtain the following possible number of 𝜔:

Case 1: If either a2
2 − a2

1 + 2a3 < 0 and a2
3 − a2

4 > 0 or (a2
2 − a2

1 + 2a3)2 < 4(a2
3 − a2

4), then there exists no positive 𝜔.
Case 2: If a2

3 − a2
4 < 0, then there exists one positive 𝜔 denoted by 𝜔+.

Case 3: If a2
2 − a2

1 + 2a3 > 0, (a2
2 − a2

1 + 2a3)2 = 4(a2
3 − a2

4), then there exists a twofold positive 𝜔.
Case 4: If a2

3 − a2
4 > 0, a2

2 − a2
1 + 2a3 > 0 and (a2

2 − a2
1 + 2a3)2 > 4(a2

3 − a2
4), then there exist two distinct positive 𝜔

denoted by 𝜔+ and 𝜔−, with 𝜔+ > 𝜔−.

We now find the critical 𝜏 corresponding to the positive 𝜔. Solving equations (12) and (13), we get

cos𝜔𝜏 = (𝜔2 − a3)a4 − a1a2𝜔
2

a2
2𝜔

2 + a2
4

=∶ C(𝜔), (16)

sin𝜔𝜏 = a2𝜔(𝜔2 − a3) + a1a4𝜔

a2
2𝜔

2 + a2
4

=∶ S(𝜔). (17)

Define 𝜃± = arccos (C(𝜔±)) ∈ (0, 𝜋). The critical values 𝜏±
𝑗

of time delay 𝜏 (if exists) are obtained by substituting 𝜔± in
equation (16) and are given as

𝜏±
𝑗
=
⎧⎪⎨⎪⎩

(2𝜋−𝜃±)
𝜔±

+ 2𝑗𝜋
𝜔±

, if S(𝜔±) < 0,
𝜃±

𝜔±
+ 2𝑗𝜋

𝜔±
, if S(𝜔±) > 0, 𝑗 = 0, 1, 2, … .

(18)

Remark 4.1. Existence of positive 𝜔's corresponding to an equilibrium point may not change the stability in a system.
We now demonstrate the fact through examples.

After acquiring the critical time delays, we examine if the eigenvalues on C0 (imaginary axis) change their signs when
delay crosses the threshold values 𝜏 = 𝜏±

𝑗
, 𝑗 = 0, 1, 2, … .

Differentiating characteristic equation (10) w.r.t. 𝜏, we obtain

(
2𝜆 + a1 − a2𝜆e−𝜆𝜏𝜏 + a2e−𝜆𝜏 − a4e−𝜆𝜏𝜏

) d𝜆
d𝜏

−
(

a2𝜆e−𝜆𝜏 + a4e−𝜆𝜏
)
𝜆 = 0. (19)

Thus, (d𝜆
d𝜏

)−1
= 2𝜆 + a1 + a2e−𝜆𝜏

(a2𝜆 + a4)𝜆e−𝜆𝜏
− 𝜏

𝜆
. (20)
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From equation (10), we get

e−𝜆𝜏 = −𝜆2 − a1𝜆 − a3

a2𝜆 + a4
.

Using the above fact, [(d𝜆
d𝜏

)−1]
𝜏=𝜏±

𝑗

=
[

−2𝜆 − a1

𝜆(𝜆2 + a1𝜆 + a3)
+ a2

𝜆(a2𝜆 + a4)
− 𝜏

𝜆

]
𝜆=i𝜔±

=
a2

1 − 2(a3 − 𝜔2)
a2

1𝜔
2 + (𝜔2 − a3)2

−
a2

2

a2
2𝜔

2 + a2
4
+ Im

[(d𝜆
d𝜏

)−1]
𝜏=𝜏±

𝑗

.

Now, we observe that

sign

{[
d(Re𝜆)

d𝜏

]
𝜏=𝜏±

𝑗

}
= sign

{
Re

[(d𝜆
d𝜏

)−1]
𝜏=𝜏±

𝑗

}

= sign

{
a2

1 − 2(a3 − 𝜔2)
a2

1𝜔
2 + (𝜔2 − a3)2

−
a2

2

a2
2𝜔

2 + a2
4

}
= sign{a2

1 − a2
2 − 2a3 + 2𝜔2}[

as a2
1𝜔

2 + (𝜔2 − a3)2 = a2
2𝜔

2 + a2
4 byEquation (14)

]
= sign

{
±
√
Δ
}
,

where Δ = (a2
2 − a2

1 + 2a3)2 − 4(a2
3 − a2

4).
Hence, we obtain the transversality conditions[

d(Re𝜆)
d𝜏

]
𝜏=𝜏+

𝑗

> 0 and
[

d(Re𝜆)
d𝜏

]
𝜏=𝜏−

𝑗

< 0, provided Δ ≠ 0.

Remark 4.2. It is noted that in Case 3, we have found a twofold 𝜔, and hence, Δ = 0. Consequently, sign
{
±
√
Δ
}
= 0,

and we conclude that no crossing of eigenvalues from C− plane to C+ plane (or vice-versa) takes place.

Further, from the conditions obtained in Cases 2 and 4, it is observed that the purely imaginary roots 𝜔± of the char-
acteristic equation (10) are simple. As a result, a pair of eigenvalues enters into the right-half complex plane C+ (resp.
left-half complex plane C−) when 𝜏 increases through 𝜏+

𝑗
(resp. 𝜏−

𝑗
). When 𝜏 = {𝜏±

𝑗
}, 𝑗 = 0, 1, 2, … , the following result

holds true:

Result 4.3. Hopf-bifurcation in the system occurs at each value of time delay 𝜏 = {𝜏±
𝑗
}, where 𝑗 = 0, 1, 2, …

We state the following Lemma due to Cooke and Grossman40 to understand the change in number of eigenvalues when
𝜏 varies.

Lemma 4.1 (Cooke and Grossman40). Let 𝑓 (𝜆, 𝜏) = 𝜆2 + d1𝜆 + d2𝜆e−𝜆𝜏 + d3 + d4e−𝜆𝜏 , where di's (i = 1, 2, 3, 4) and 𝜏

are real numbers and 𝜏 > 0. Then, as 𝜏 varies, the sum of the multiplicities of zeros of 𝑓 in the open right half-plane can
change only if a zero appears on or crosses the imaginary axis.

It is to be noted that conditions of Case 1 are the necessary as well as sufficient for the system to undergo no change in
its stability (resp. instability) nature. Further, the conditions in Case 2 (resp. Case 3) are necessary for change of stability
(resp. stability switching). Thus, based on the above discussions, the following theorems are presented to understand the
stability phenomenon of the two interior equilibria.

Theorem 4.2. If either (a2
2 − a2

1 + 2a3) < 0 and (a2
3 − a2

4) > 0 or (a2
2 − a2

1 + 2a3)2 < 4(a2
3 − a2

4) following Case 1 are
satisfied, then there does not exist any critical time delays. Thus, the stability (resp. instability) of any interior equilibrium
E = (x∗, 𝑦∗) remains unchanged for 𝜏 > 0.
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Theorem 4.3. If an interior equilibrium E = (x∗, 𝑦∗) is stable in absence of 𝜏 , and the condition a2
3 − a2

4 < 0 following
Case 2 is satisfied, then stability of the interior equilibrium changes.

Theorem 4.4. If an interior equilibrium E = (x∗, 𝑦∗) is stable in absence of 𝜏 , and the conditions a2
3 − a2

4 > 0, a2
2 − a2

1 +
2a3 > 0, and (a2

2 − a2
1 + 2a3)2 > 4(a2

3 − a2
4) in Case 4 are satisfied, then the following cases hold:

1. A change in the stability takes place whenever 0 < 𝜏+0 < 𝜏+1 < 𝜏−0 .
2. A finite k number of stability switching occurs whenever 0 < 𝜏+0 < 𝜏−0 < 𝜏+1 < 𝜏−1 < · · · < 𝜏+k < 𝜏+k+1 < 𝜏−k < … .

Eventually for 𝜏 > 𝜏+k , the equilibrium remains unstable.

Theorem 4.5. If an interior equilibrium E = (x∗, 𝑦∗) is unstable in absence of 𝜏 , and the condition a2
3−a2

4 < 0 in Case 2 is
satisfied, then the existence of 𝜏+

𝑗
( 𝑗 = 0, 1, 2, … ) corresponding to the positive 𝜔+ cannot lead to change in its instability.

Theorem 4.6. If an interior equilibrium E = (x∗, 𝑦∗) is unstable in absence of 𝜏 , and the conditions a2
3 − a2

4 > 0,
a2

2 − a2
1 + 2a3 > 0, and (a2

2 − a2
1 + 2a3)2 > 4(a2

3 − a2
4) in Case 4 are satisfied, then the following cases hold:

1. the system remains unstable for all 𝜏 whenever 0 < 𝜏+0 < 𝜏+1 < 𝜏−0 .
2. a finite k number of instability switching occurs whenever 0 < 𝜏−0 < 𝜏+0 < 𝜏−1 < 𝜏+1 < · · · < 𝜏+k < 𝜏+k+1 < 𝜏−k < … .

Finally for 𝜏 > 𝜏+k , the equilibrium retains its instability.

Proof.

(1.) Initially there exist a pair of roots in C+ when 𝜏 = 0. As the conditions in Case 4 are satisfied, this leads to
existence of 𝜔±. The corresponding values of critical time delays are given from expression (18). As mentioned
in Lemma 4.1, the sum of multiplicities of roots in C+ will change only when a root appears on or crosses the
imaginary axis. So in addition to the pair of roots that are already in C+ at 𝜏 = 0, multiplicity of the roots
in C+ increased by 2 immediately after 𝜏 is increased and passes through 𝜏+0 . Next, when 𝜏 passes through
𝜏+1 , another pair of roots is added in C+. Now, further increase in 𝜏 through 𝜏−0 cannot change the instability
since a pair of roots still persist in C+. However, three consecutive appearance of 𝜏−0 , 𝜏−1 , and 𝜏−2 in between 𝜏+1
and 𝜏+2 can change the instability. But from equation (15), we have 𝜔+ > 𝜔−. So, from expression (18), we get|𝜏+i+1 − 𝜏+i | = 2𝜋

𝜔+
<

2𝜋
𝜔−

= |𝜏−i+1 − 𝜏−i |. Henceforth, two consecutive 𝜏−0 and 𝜏−1 is impossible to appear in between
𝜏+1 and 𝜏+2 since the distance between two 𝜏+i are always less than the distance between two consecutive 𝜏−i ,
(i = 1, 2, 3, …). Thus, instability persevere for all 𝜏.

(2.) In absence of delay, there exist a pair of roots in C+. Once 𝜏 reaches 𝜏−0 , a pair of imaginary roots lie on C0.
Then, with increase in the value of 𝜏 through 𝜏−0 , multiplicity of roots in C+ decreases by two. Henceforth,
the equilibrium becomes stable. Again with increase in 𝜏 through 𝜏+0 , multiplicity of roots in C+ will increase
by 2. Thus, the system becomes unstable again. Using the same arguments as above, instability switching will
continue until the appearance of two consecutive 𝜏+k+1 and 𝜏+k together, beyond which instability persists.

□

Theorem 4.7. If an interior equilibrium E = (x∗, 𝑦∗) is a saddle point when 𝜏 = 0, then the equilibrium cannot be stable
for varying delay 𝜏 .

Proof. Since the interior equilibrium E = (x∗, 𝑦∗) is a saddle point, one of the two eigenvalues of the characteristic
function (11) must lie in C+ plane and the other eigenvalue lies in C− plane. The equilibrium becomes stable for some
𝜏 only when no eigenvalues lie in the C+ plane. Now, as mentioned in Lemma 4.1,40 with increase in 𝜏, the sum of
multiplicities of zeros of the characteristic equation (10) in the C+ plane can change only if a zero appears on or cross
imaginary axis. This means that, without this process, no eigenvalues are immersed in C+ plane. But the crossing of
eigenvalues occurs in pair. Since only a single eigenvalue lies in C+ plane, it can never cross the C0 axis. Thus the
system cannot become stable for any 𝜏 > 0. □

Analytical prove is provided for Theorems 4.6 and 4.7. However, the theorems (Theorems 4.2–4.6) are not validated
yet. Several articles presented mathematical conditions for the (non) existence of positive 𝜔 to depict the delay induced
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dynamics. However, some contributions did not prove the validity of the mathematical conditions in a general param-
eter space.14,31 Morever, the mathematical conditions are not verified numerically. We now recall Cases 1 to 4 for the
(non) existence of 𝜔. We examine whether these cases could be possible under certain parameter sets. The illustrations
in the succeeding sections reflect a more clear-cut depiction of the stability behavior of system (4) under mathematical
conditions mentioned in Cases 1, 2 and 4, and verify Theorems 4.2–4.7 with respect to our system (4).

4.1 No change in stability
The below example satisfies Theorems 4.2, 4.5, and 4.7.

Example 4.1. We consider the parameter values for system (4) as r = 0.5, K = 400, 𝛼 = 0.03, 𝛽 = 0.01, 𝛾 =
0.01, m = 0.1, and C = 50. The trivial equilibrium (0, 0) and boundary equilibrium (400, 0) always exist, and their
stability behavior is shown analytically. We focus to investigate the stability of the coexisting equilibria in all the
examples. The two interior equilibria are E1 = (113.8600,11.9225) and E2 = (359.7400, 1.6775). We find a1 + a2 =
0.0702 > 0 and a3 + a4 = 0.0845 > 0 at the interior equilibrium E1. Thus, E1 is locally stable when 𝜏 = 0. Now,
(a2

2 − a2
1 + 2a3)2 −4(a2

3 −a2
4) = −0.0068 < 0 at E1, i.e., the condition in Case 1 is satisfied at E1. Hence no real 𝜔 exists.

Thus, the equilibrium E1 remains locally stable for all time delays.
On the other hand, a1 + a2 = 0.3535 > 0 and a3 + a4 = −0.0374 < 0 at the interior equilibrium E2, which indicate

that E2 is a saddle point (unstable) when 𝜏 = 0. Hence, by Theorem 4.7, we obtain no change in stability due to
varying delay. Alternatively, we can explore how the internal mechanism works to maintain its instability. We note
that a2

3 − a2
4 = −0.0059 < 0 associated with E2. Thus, a positive 𝜔+ = 0.1728 exists by Case 2. The corresponding

𝜏+0 = 31.1886 has the transversality condition
[

d(Re𝜆)
d𝜏

]
𝜏=𝜏+0

> 0. Therefore, a pair of eigenvalues with negative real

parts shift from C− plane to C+ plane. Thus, no change in the instability is observed. Henceforth, numerically too, we
conclude that E2 undergoes no change in its instability. The same result is stated in Theorem 4.5. We further plot some
of the real parts of the roots of the characteristic function associated with E2, to examine how they evolve with delay
(Figure 1). It is clear from Figure 1 that a positive root always exists independent of the values of time delays. However,
a pair of eigenvalues crosses C0 at 𝜏+0 = 31.1886 since the transversality condition

[
d(Re𝜆)

d𝜏

]
𝜏=𝜏+0

> 0 is satisfied. Note

that many eigenvalues with negative real parts are originated when 𝜏 increases. The presence of positive real parts of
the roots indicates the instability which persists for E2 for all time delay.

Generally, local dynamics around a stable (an unstable) equilibrium changes its stability in delayed population
models once the first critical threshold exists. To the best of the knowledge, the scenario is different for the saddle

FIGURE 1 The real part of the roots of the characteristic function are plotted for varying 𝜏 corresponding to E2 = (359.7400, 1.6775) for the
set of parameter values r = 0.5, K = 400, 𝛼 = 0.03, 𝛽 = 0.01, 𝛾 = 0.01, m = 0.1, and C = 50. A pair of eigenvalues crosses C0 at
𝜏+0 = 31.1886 (indicated in red star) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 2 The time series evolution of the predator for the parameters r = 0.4, K = 100, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.01, and C = 0.5
with the initial conditions (0.3, 0.3), is plotted in (A) when 𝜏 = 1 and in (C) when 𝜏 = 3. The corresponding phrase portraits with the same
initial conditions (indicated in red) are shown in (B) when 𝜏 = 1 and in (D) when 𝜏 = 3. The equilibrium E1 = (0.8222, 0.3967) (indicated in
green) is locally stable when 𝜏 = 1 and is unstable when 𝜏 = 3 as shown in (A) and (D), respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

equilibrium in our model which has not been explored before. Overall, it can be concluded in this example that E1 is
locally stable and E2 is saddle for all time delay. Also, we proved analytically that the stability of the trivial equilibrium
and the boundary equilibrium do not depend on delay. So the system experiences no change in dynamics due to
varying 𝜏.

4.2 Stability change
In the following example, Theorems 4.3 and 4.7 are validated for our system (4).

Example 4.2. If the parameters for system (4) are: r = 0.4, K = 100, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.01, and
C = 0.5, then the two interior equilibria E1 = (0.8222, 0.3967) and E2 = (99.9860, 0.000055) come into existence.
Here, a1 + a2 = 0.1303 > 0 and a3 + a4 = 0.1381 > 0 at the equilibrium E1. Hence E1 is stable when 𝜏 = 0. The
condition of Case 2 is satisfied at E1, i.e., a2

3 − a2
4 = −0.0164 < 0. Consequently, one positive 𝜔+ = 0.2685 is acquired.

The first critical time delay is 𝜏+0 = 1.3779, and the transversality condition
[

d(Re𝜆)
d𝜏

]
𝜏=𝜏+0

> 0 is satisfied at 𝜏+0 . The

equilibrium E1 is stable (Figure 2A, B) when 𝜏 < 𝜏+0 . If 𝜏 = 𝜏+0 , a Hopf-bifurcation occurs at E1. Further increasing
the value of 𝜏(> 𝜏+0 ), a pair of eigenvalues cross C0 from C− to C+. Hence, E1 becomes unstable (Figure 2C, D).
Since the transversality condition

[
d(Re𝜆)

d𝜏

]
𝜏=𝜏+

𝑗

> 0 holds at every critical threshold of delay, on any interval (𝜏+
𝑗
, 𝜏+

𝑗+1)

http://wileyonlinelibrary.com
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FIGURE 3 The real part of the eigenvalues of the characteristic function are plotted with respect to varying 𝜏. Here, the red star represents
the eigenvalue with zero real part corresponding to the critical 𝜏+0 = 301.6067. It can be seen that positive real parts of the eigenvalues exist for
all time delays considered, which maintains the instability of the corresponding equilibrium. The parameter set are r = 0.4, K = 100, 𝛼 = 1,
𝛽 = 0.9, 𝛾 = 0.8, m = 0.01, C = 0.5, and the equilibrium is E2 = (99.9860, 0.000055) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Some of the values of 𝜏±
𝑗
( 𝑗 =0, 1, 2, 3, 4, 5) for the same parameter set corresponding to Example 4.3

𝜏+
𝑗

𝜏+0 ≈ 6.2959 𝜏+1 ≈ 41.0120 𝜏+2 ≈ 75.7281 𝜏+3 ≈ 110.4442 𝜏+4 ≈ 145.1603 𝜏+5 = 179.8764
𝜏−
𝑗

𝜏−0 ≈ 51.8174 𝜏−1 ≈ 181.7683 𝜏−2 ≈ 311.7192 𝜏−3 ≈ 441.6701 𝜏−4 ≈ 571.6210 𝜏−5 ≈ 701.5719

( 𝑗 = 1, 2, … ), the number of eigenvalues with positive real parts is 2𝑗. Therefore, E1 remains unstable for all 𝜏 > 𝜏+0
as stated in Theorem 4.3. Now, corresponding to the equilibrium E2, a1 + a2 = 0.3899 > 0 and a3 + a4 = −0.0040 < 0.
This confirms that E2 is a saddle point when 𝜏 = 0. Hence, E2 will remain saddle for varying delay 𝜏, as stated in
Theorem 4.7. We can also address this result numerically. For E2, we have a2

3 − a2
4 = −0.00004825. Consequently, one

positive𝜔+ = 0.0174 exists as discussed in Case 2. Corresponding to threshold 𝜏+0 = 301.6, the transversality condition[
d(Re𝜆)

d𝜏

]
𝜏=𝜏+0

> 0 is satisfied. Thus, E2 remains saddle for all time delay. In Figure 3, real parts of some of the roots of

the characteristic function are plotted for varying time delay to visualize the nature of stability of the equilibrium E2.

Next, we provide an example to understand the validity of the Theorem 4.4 in our system (4).

Example 4.3. The parameters r = 0.8, K = 45, 𝛼 = 0.07, 𝛽 = 0.04, 𝛾 = 0.001, m = 0.3, and C = 5.6888 generate
two interior equilibria E1 = (13.1132, 8.0982) and E2 = (39.7646, 1.3296). Here, E1 is stable for 𝜏 = 0 since a1 + a2 =
0.1141 > 0 and a3+a4 = 0.14690.1469 > 0 at E1. The conditions of Case 4 are satisfied at E1, i.e., a2

3−a2
4 = 0.00007 > 0,

a2
2 − a2

1 + 2a3 = 0.0351 > 0, and (a2
2 − a2

1 + 2a3)2 − 4(a2
3 − a2

4) = 0.0009 > 0. Therefore, 𝜔+ = 0.1810 and 𝜔− = 0.0484
are obtained. The numerical values of the critical time delays are supplied in Table 1. The distribution of the critical
time delays in ascending order based on their numerical values are as follows:

𝜏+0 < 𝜏+1 < 𝜏−0 < 𝜏+2 < 𝜏+3 < 𝜏+4 < 𝜏+5 < 𝜏−1 < … .

Based on the distribution of the critical delays, it is observed that the conditions of Theorem 4.4 hold true, and hence,
E1 changes its stability. The time series for some values of 𝜏 are provided in Figure 4A–C, which clearly illustrates
the stability changing nature of E1. The real parts of eigenvalues for the characteristic function associated with E1 is
plotted in Figure 4D to support our obtained results. For the equilibrium E2, we find that a1 + a2 = 0.4640 > 0 and
a3 + a4 = −0.1437 < 0 which confirm that E2 is a saddle point in absence of time delay. Hence by Theorem 4.7, we
conclude that E2 remains saddle for varying time delay.

http://wileyonlinelibrary.com
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FIGURE 4 For the initial conditions (14, 7), the solution is plotted for (A) 𝜏 = 3, (B) 𝜏 = 9, and (C) 𝜏 = 45 with the parameters
r = 0.8, K = 45, 𝛼 = 0.07, 𝛽 = 0.04, 𝛾 = 0.001, m = 0.3, and C = 5.6888. The equilibrium (13.1132, 8.0982) is stable for 𝜏 < 6.2959 and
unstable for all 𝜏 > 6.2959. (D) The real parts of the eigenvalues are plotted for varying 𝜏. The red stars represent the critical delays
𝜏+0 = 6.2959, 𝜏+1 = 41.0120, 𝜏−0 = 51.8174, and 𝜏+2 = 75.7281 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Some of the values of 𝜏±
𝑗
( 𝑗 = 0, 1, 2, 3) for parameters r = 0.5, K = 400, 𝛼 = 0.03, 𝛽 = 0.01, 𝛾 = 0.01, m = 0.1, and

C = 39.6

𝜏+
𝑗

𝜏+0 ≈ 9.0221 𝜏+1 ≈ 59.9663 𝜏+2 ≈ 110.9105 𝜏+3 ≈ 161.8547
𝜏−
𝑗

𝜏−0 ≈ 26.4507 𝜏−1 ≈ 117.6972 𝜏−2 ≈ 208.9436

4.3 Stability switching
In the following two examples, Theorem 4.4 is satisfied.

Example 4.4. The parameters r = 0.5, K = 400, 𝛼 = 0.03, 𝛽 = 0.01, 𝛾 = 0.01, m = 0.1, and C = 39.6 produce two
interior equilibria E1 = (93.3713,12.7762) and E2 = (370.2447, 1.2398). The equilibrium E1 is a stable focus due to
existence of eigenvalues −0.0361362 ± 0.284262i when 𝜏 = 0. The conditions of Case 4, i.e., a2

3−a2
4 = 0.00007212 > 0,

a2
2 − a2

1 + 2a3 = 0.0200 > 0, and (a2
2 − a2

1 + 2a3)2 − 4(a2
3 − a2

4) = 0.0001096 > 0, are satisfied corresponding to E1.
Hence, two positive 𝜔, viz., 𝜔+ = 0.1233 and 𝜔− = 0.0689 exist. The values of the critical time delays are supplied in
Table 2, and they are arranged in ascending orders as

𝜏+0 < 𝜏−0 < 𝜏+1 < 𝜏+2 < 𝜏−2 < 𝜏+3 < … .

It can be concluded that E1 remains stable till 𝜏 < 𝜏+0 . When 𝜏 = 𝜏+0 , the transversality condition
[

d(Re𝜆)
d𝜏

]
𝜏=𝜏+0

> 0 is

satisfied which indicates that a pair of eigenvalues with negative real parts shifts to the right half plane C+. Thus, once

http://wileyonlinelibrary.com
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FIGURE 5 (A) The bifurcation diagram with respect to predator population when 𝜏 is varied. The predator response in time
corresponding to the equilibrium E1 is plotted for (B) 𝜏 = 5, (C) 𝜏 = 15, and (D) 𝜏 = 30. The parameter values provided are r = 0.5,
K = 400, 𝛼 = 0.03, 𝛽 = 0.01, m = 0.1, 𝛾 = 0.01, and C = 39.6 with the initial conditions (93,12) [Colour figure can be viewed at
wileyonlinelibrary.com]

𝜏 > 𝜏+0 , E1 becomes unstable due to the presence of eigenvalues with positive real parts. Again, when the next critical
value 𝜏−0 is obtained, a pair of positive eigenvalues shifts from C+ to the left half plane C− since the transversality
condition

[
d(Re𝜆)

d𝜏

]
𝜏=𝜏−0

< 0 holds. This makes the equilibrium E1 stable again. With further increase in 𝜏, it is noticed

from Table 2 that the succeeding critical delays after 𝜏−0 are 𝜏+1 and 𝜏+2 . Thus, eigenvalues with positive real parts always
exist for the characteristic equation (10) whenever 𝜏 > 𝜏+1 . This suggests that the system remains unstable once the
time delay becomes grater than 𝜏+1 . The stability switching naure at E1 is illustrated in Figure 5 by choosing some
values of time delay.

Now, the other interior equilibrium E2 is a saddle point (unstable) when 𝜏 = 0 due to existence of a positive root
0.0890 and a negative root −0.4552 of the characteristic function. The conditions mentioned above are met, i.e., a2

3 −
a2

4 = −0.0063 < 0. So a positive 𝜔+ = 0.1732 exists. However, for the critical time delay 𝜏+0 = 6.4243, the transversality
condition

[
d(Re𝜆)

d𝜏

]
𝜏=𝜏+

𝑗

> 0 holds. Henceforth, E2 remains unstable for all time delay.

We provide another example to explain that multiple stability switching may take place in the system.

Example 4.5. We choose the parameters as r = 0.4, K = 100, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.1, and C = 20 and
obtain the interior equilibria E1 = (25.6227, 0.2975) and E2 = (92.5570, 0.0297). Corresponding to E1, a1 +a2 = 0.0074
and a3 + a4 = 0.0908, which confirm the stability of E1 in absence of 𝜏. Further, we determine a2

3 − a2
4 = 0.0025,

a2
2 − a2

1 + 2a3 = 0.1080, and (a2
2 − a2

1 + 2a3)2 − 4(a2
3 − a2

4) = 0.0018, and corresponding 𝜔+ = 0.2739 and 𝜔− = 0.1816.
The numerical values of the critical delays are provided in Table 3. The distribution of the critical delays in ascending
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order are as follows:

𝜏+0 < 𝜏−0 < 𝜏+1 < 𝜏−1 < 𝜏+2 < 𝜏+3 < 𝜏−2 < 𝜏+4 < 𝜏−3 < 𝜏+5 < … .

Based on this distribution of the critical values, we can infer that, when the critical delays are in the range (0, 𝜏+0 ), the
equilibrium E1 is stable. A Hopf-bifurcation occurs at 𝜏 = 𝜏+0 . Further increase in the values of delay leads to instability
till the threshold 𝜏 = 𝜏−0 . For 𝜏 = 𝜏−0 , a Hopf-bifurcation occurs. Again, when 𝜏 lies in the range (𝜏−0 , 𝜏

+
1 ), stability is

regained for E1. This switching of stability repeats till 𝜏 = 𝜏+2 . When 𝜏 = 𝜏+2 , another Hopf-bifurcaton occurs, and
further increase of 𝜏 leads to instability forever.

The bifurcation diagram with respect to the predator population, when the critical delays are varied, is supplied in
Figure 6. It can be seen in the figure that the two bubbles appear which represent the two stability switching.

On the other hand, at E2, we have a1 + a2 = 0.2704 and a3 + a4 = −0.0333, which indicate that E2 is a saddle point
when 𝜏 = 0. Hence, by Theorem 4.7, we conclude that no change in the stability occurs at E2.

4.4 No change in instability
The below example satisfies Theorems 4.6 and 4.7.

Example 4.6. We take the parameter set as r = 0.34, K = 102, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.1, and C = 16.9.
Two interior equilibria are E1 = (22.4506, 0.2652) and E2 = (94.9394, 0.0235). The equilibrium E1 is unstable focus in
the absence of 𝜏, since a1+a2 = −0.0203 < 0 and a3+a4 = 0.0756 > 0. At E1, a2

3−a2
4 = 0.00021, a2

2−a2
1+2a3 = 0.1033,

and (a2
2 − a2

1 + 2a3)2 − 4(a2
3 − a2

4) = 0.0098. Thus, the conditions mentioned in Case 4 are met here. These conditions
lead to 𝜔+ = 0.3180 and 𝜔− = 0.0460. The values of critical time delays are supplied in Table 4. However, it can be
seen from the table, that the appearance of two consecutive 𝜏+0 and 𝜏+1 never makes the equilibrium E1 stable. Hence,
instability persists for all time delay around E1.

Now, for the equilibrium E2, we have a1 +a2 = 0.2166 and a3 +a4 = −0.0288, which indicate E2 to be a saddle point
when 𝜏 = 0. As quoted in Theorem 4.7, the equilibrium E2 could not alter its stability.

TABLE 3 Some of the values of 𝜏±
𝑗
( 𝑗 = 0, 1, 2, 3) for parameter sets r = 0.4, K = 100, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.1, and C = 20

𝜏+
𝑗

𝜏+0 ≈ 0.3114 𝜏+1 ≈ 23.2482 𝜏+2 ≈ 46.1851 𝜏+3 ≈ 69.1219 𝜏+4 = 92.0587 𝜏+5 = 114.9956
𝜏−
𝑗

𝜏−0 ≈ 2.5518 𝜏−1 ≈ 37.1476 𝜏−2 ≈ 71.7435 𝜏−3 ≈ 106.3394 𝜏−4 = 140.9353 𝜏−5 = 175.5312

FIGURE 6 The bifurcation diagram in terms of predator population under varying 𝜏 for the parameter values
r = 0.4, K = 100, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.1, and C = 20 [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 4 Some of the values of 𝜏±
𝑗
( 𝑗 = 0, 1, 2, 3) for the parameter set r = 0.34, K = 102, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.1,

and C = 16.9
𝜏+
𝑗

𝜏+0 ≈ 19.3433 𝜏+1 ≈ 39.0997 𝜏+2 ≈ 58.8562 𝜏+3 ≈ 78.6127
𝜏−
𝑗

𝜏−0 ≈ 40.0435 𝜏−1 ≈ 176.7829 𝜏−2 ≈ 313.5223 𝜏−3 ≈ 450.2618

TABLE 5 Some of the values of 𝜏±
𝑗
( 𝑗 = 0, 1, 2, 3, 4, 5) for the parameter set r = 0.4, K = 100, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.1,

and C = 16.9
𝜏+
𝑗

𝜏+0 ≈ 18.4872 𝜏+1 ≈ 37.1166 𝜏+2 ≈ 55.7459 𝜏+3 ≈ 74.3753 𝜏+4 ≈ 93.0047 𝜏+5 ≈ 111.6340
𝜏−
𝑗

𝜏−0 ≈ 105.5391 𝜏−1 ≈ 369.1680 𝜏−2 ≈ 632.7968 𝜏−3 ≈ 896.4256 𝜏−4 ≈ 1160.0544 𝜏−5 ≈ 1423.6832

TABLE 6 Some of the values of 𝜏±
𝑗
( 𝑗 = 0, 1, 2, 3, 4) when r = 1.2, K = 80, 𝛼 = 0.2, 𝛽 = 0.1, m = 2.0, C = 2.1, and 𝛾 = 0.001

𝜏+
𝑗

𝜏−0 ≈ 1.0035 𝜏−1 ≈ 12.4723 𝜏−2 ≈ 23.9411 𝜏−3 ≈ 35.4099 𝜏−4 ≈ 46.8787 𝜏−5 ≈ 58.3475
𝜏−
𝑗

𝜏+0 ≈ 3.4262 𝜏+1 ≈ 7.0883 𝜏+2 ≈ 10.7503 𝜏+3 ≈ 14.4124 𝜏+4 ≈ 18.0744 𝜏+5 ≈ 21.7364

FIGURE 7 (A) Bifurcation diagram with respect to predator when time delay varies. For initial conditions (31.6, 3.8) (indicated by red dot),
the phase portrait is plotted for (B) 𝜏 = 0.3, (C) 𝜏 = 0.8, (D) 𝜏 = 2, and (E) 𝜏 = 5, where r = 1.2, K = 80, 𝛼 = 0.2, 𝛽 = 0.1, m = 2.0, C = 2.1,
𝛾 = 0.001. Here, the green dot indicates the equilibrium (31.6361, 3.6272) [Colour figure can be viewed at wileyonlinelibrary.com]

We also provide an example below where instead of appearance of two consecutive 𝜏+
𝑗

, ( 𝑗 = 0, 1), we have appearance
of four consecutive 𝜏+

𝑗
, ( 𝑗 = 0, 1, 2, 3), before the appearance of the first 𝜏−0 .

Example 4.7. We take the parameter set as r = 0.4, K = 100, 𝛼 = 1, 𝛽 = 0.9, 𝛾 = 0.8, m = 0.1, and C = 16.9. Two
interior equilibria are E1 = (21.3842, 0.3144) and E2 = (94.0497, 0.0238). The equilibrium E1 is unstable focus in the
absence of 𝜏, since a1 + a2 = −0.0080 < 0 and a3 + a4 = 0.1026 > 0. At E1, a2

3 − a2
4 = 0.000064, a2

2 − a2
1 + 2a3 = 0.1143,

and (a2
2 − a2

1 + 2a3)2 − 4(a2
3 − a2

4) = 0.0128. Thus, the conditions mentioned in Case 4 are met here. These conditions
lead to 𝜔+ = 0.3373 and 𝜔− = 0.0238. The values of critical time delays are supplied in Table 5. However, it can be
seen from the table, that the appearance of two consecutive 𝜏+0 and 𝜏+1 never makes the equilibrium E1 stable. Hence,
instability persists for all time delay around E1.

Now, for the equilibrium E2, we have a1 +a2 = 0.2764 and a3 +a4 = −0.0347, which indicate E2 to be a saddle point
when 𝜏 = 0. As quoted in Theorem 4.7, the equilibrium E2 could not alter its stability.
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4.5 Instability switching
Here validity of Theorem 4.6 for system (4) is demonstrated through the following example.

Example 4.8. We consider the parameter set as r = 1.2, K = 80, 𝛼 = 0.2, 𝛽 = 0.1, 𝛾 = 0.001, m = 2.0, and C = 2.1.
We determine two interior equilibria E1 = (31.6361, 3.6272) and E2 = (68.4297, 0.8677). Now, a1 + a2 = −0.2564 and
a3 + a4 = 1.1066, when evaluated at E1. We can conclude that, in absence of time delay, the interior equilibrium E1 is
unstable. Further, a2

3 − a2
4, a2

2 − a2
1 + 2a3, and (a2

2 − a2
1 + 2a3)2 − 4(a2

3 − a2
4) are found to be 0.8836, 3.2440 and 6.9891

respectively. Table 6 gives the values of the critical time delays, which can be arranged in ascending order as follows

𝜏−0 < 𝜏+0 < 𝜏+1 < 𝜏+2 < 𝜏−1 < 𝜏+3 < 𝜏+4 < 𝜏+5 < 𝜏−2 < … .

Since two consecutive 𝜏+
𝑗
( 𝑗 = 0, 1, 2) appear successively, so by Theorem 4.6 , we conclude that the interior equilib-

rium E1 undergoes instability switching. The bifurcation diagram and phase portraits are shown in Figure 7. For the
equilibrium E2, we get a1 + a2 = −0.3885 and a3 + a4 = −1.1051. Thus, the equilibrium E2 is a saddle and remains
saddle for all time delay as mentioned in Theorem 4.7.

5 CONCLUSION

In this paper, we considered a predator-prey system with Holling type I functional response and intra-specific compe-
tition among the predators, but the numerical response is not proportional to the functional response. The role of such
a unbalanced functional and numerical responses has been studied by a limited number of researchers to explore pop-
ulation dynamics in the contexts of Allee induced dynamics1,34 biological pest control,35 and hydra effect.36 A special
feature of our model is that the number of coexisting equilibria (if exist) is always two. We investigated the model dynam-
ics under varying time delay. We have shown the positivity and boundedness of the solutions to the delayed model. The
trivial equilibrium is always unstable, whereas the boundary equilibrium is locally stable even in the presence of the pair
of coexisting equilibria. Local dynamics of the trivial and boundary equilibrium is independent of time delay. We have
proved the global stability of the boundary equilibrium. Because of the existence of two interior equilibria, global stability
at coexisting equilibrium does not hold neither in the delayed nor in non-delayed system.

We examined the change of stability of the coexisting equilibria. We have presented four cases (Cases 1–4) for the
existence of a pair of purely imaginary eigenvalues of the characteristic equation for some critical time delays. A series of
theorems (Theorem 4.2–4.7) are sorted out based on the discussion of the four Cases 1–4. Applicability of all the theorems
in our model are validated with suitable examples. The interesting outcomes of the local dynamics corresponding to one
of the coexisting equilibria (which is not the saddle equilibrium) are as follows:

(i) The equilibrium does not change in stability with increase in time delay.
(ii) The equilibrium undergoes stability change (from stable to unstable).

(iii) The equilibrium undergoes one or multiple stability switching.
(iv) The equilibrium undergoes instability switching.
(v) The equilibrium does not change instability.

All the above situations were explained numerically as well as graphically. Toaha32 proved that at most two outcomes
R1 and R2 are possible when the model does not involve the intraspecific competition among predators, and both the
functional and numerical responses are of Holling type I. We arrived at the same conclusion with Toaha32 when the
intraspecific competition is present among predators (analytical proof is given in Appendix A1). Therefore, we conclude
that the variety of such delay-induced dynamical behaviors in a single and relatively simple model are due to the presence
of the distinct numerical response function. This is one of the novelties in our work.

While exploring the delay-induced dynamics, we identified some interesting facts which could be worth-mentioning
both from mathematical and computational view points. Several earlier contributions highlighted that stability remains
unaltered due to varying delay if no 𝜔 exists from the corresponding characteristic equation. Nevertheless, existence of
a 𝜔 leads to stability change, and existence of two values of 𝜔 result to stability switching. However, corresponding to
one of the equilbrium E1, we detected situation where two 𝜔 exist, but the equilibrium undorgoes stability change only
(Example 4.3). Apart from the results R1–R4, more complicated and rich analysis appeared in this model. Therefore, a
detailed analysis is essential while investigating a delayed population model.
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In Theorem 4.7, we have proved that a saddle equilibrium does not change its stability due to varying delay. A detailed
mechanism, associated with the stability of the saddle point, has been explained numerically and graphically. In all the
examples, 𝜔 exists, but the transversality condition

[
d(Re𝜆)

d𝜏

]
𝜏=𝜏+

𝑗

> 0 holds at each critical delays. Graphical represen-

tation demonstrate the mechanism of creating new eigenvalues of the characteristic function only in C− plane, while
increase of eigenvalues in C+ is possible due to the crossing of eigenvalues from C− to C+ through C0. This knowledge
and information might be useful to study many more delay differential equations.

In the current study, we examined the stability of two coexisting equilibria. The two coexisting equilibria exists due to
the presence of Allee effect in the model. However, several stage-structured ecological systems exhibit multi-stability at
equilibria. It could be interesting to address non delayed systems which possesses such multi-stability and examine how
multi-stability could be altered due to delays.
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APPENDIX A: DYNAMICS OF WC MODEL WITH INTRA-SPECIFIC COMPETITION

We recall the system (3) considered in Section 2. As obtained in Section 4, the equilibrium points for system (3)
are (i) the trivial equilibrium (0, 0), (ii) the boundary equilibrium (K, 0), and (iii) the interior equilibrium (x∗, 𝑦∗) =(

K − K𝛼
𝛽K−m
𝛽K𝛼+𝛾r

,
r(𝛽K−m)
𝛽K𝛼+𝛾r

)
, which exists only if 𝛽K > m.

Linearizing system (3) around the interior equilibrium, we get

.x(t) =
(

r − 2rx∗
K

− 𝛼𝑦∗
)

x(t) − 𝛼x∗𝑦(t), (A1)

.
𝑦(t) = − (m + 2𝛾𝑦∗) 𝑦(t) + 𝛽𝑦∗x(t − 𝜏) + 𝛽x∗𝑦(t − 𝜏). (A2)

The characteristic equation is given as

𝜆2 + a1𝜆 + a2𝜆e−𝜆𝜏 + a3 + a4e−𝜆𝜏 = 0, (A3)

info:doi/10.1002/mma.8825
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where

a1 = rx∗
K

+ m + 2𝛾𝑦∗,

a2 = −𝛽x∗,

a3 = r x∗
K
(m + 2𝛾𝑦∗),

a4 = −r𝛽x∗ x∗
K

+ 𝛼𝛽x∗𝑦∗.

For 𝜏 = 0, the characteristic equation reduces to

𝜆2 + (a1 + a2)𝜆 + (a3 + a4) = 0. (A4)

Since 𝛽K > m holds for the existence of equilibrium, therefore,

a1 + a2 = r(𝛼m + 𝛾r) + 𝛾r(K𝛽 − m)
K𝛼𝛽 + 𝛾r

> 0,

and
a3 + a4 = r(𝛼m + 𝛾r)(K𝛽 − m)

K𝛼𝛽 + 𝛾r
> 0.

So we can conclude that, system (3) is stable when 𝜏 = 0.
Now we want to verify if there exist roots 𝜆 = ±i𝜔, (𝜔 > 0) of the characteristic equation (A3) when 𝜏 increases.

Substituting 𝜆 = i𝜔 in equation (A3) and separating the real and imaginary parts, we obtain

−𝜔2 + a2𝜔 sin𝜔𝜏 + a4 cos𝜔𝜏 + a3 = 0, (A5)

a1𝜔 + a2𝜔 cos𝜔𝜏 − a4 sin𝜔𝜏 = 0. (A6)
Eliminating 𝜏 from equations (A5) and (A6), we get

(𝜔2 − a3)2 + a2
1𝜔

2 = a2
2𝜔

2 + a + 42,

which reduces to
𝜔4 + (a2

1 − a2
2 − 2a3)𝜔2 − a2

4 + a2
3 = 0. (A7)

The roots of equation (A7) are

𝜔2
± = 1

2
(a2

2 − a2
1 + 2a3) ±

1
2
[
(a2

2 − a2
1 + 2a3)2 − 4(a2

3 − a2
4)
]1∕2

. (A8)

We analyze the stability of system (3) based on the roots of equation (A7).
We find that

(a2
2 − a2

1 + 2a3) = − r2(𝛼m + 𝛾r)2 + 𝛾2r2(K𝛽 − m)2 + 2K𝛽𝛾r(K𝛽 − m)(𝛼m + 𝛾r)
(K𝛼𝛽 + 𝛾r)2 < 0,

which implies that two positive 𝜔2
± is not possible to obtain. Thus, there does not exist stability switching for system (3).
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