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Dynamics of a spatially coupled model with delayed prey dispersal
Binandita Barmana and Bapan Ghosh b

aDepartment of Mathematics, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, INDIA; bDepartment of Mathematics, 
Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, INDIA

ABSTRACT
Dispersal of species from one region to another one is a common occurrence in ecology. Several 
studies have been conducted on predator–prey interactions subjected to population dispersal 
between patches. In this paper, we consider a two-patch Rosenzweig-MacArthur predator-prey 
model with prey dispersal. In absence of predator, the movement of prey is density-independent. 
Predator-influenced prey dispersal is also taken into account because predators have a potential to 
control prey movement. Travelling time (time delay) linked with the movement mechanism among 
the prey community is incorporated. The positivity and boundedness of the solutions in the 
spatially coupled system are established. Stability behaviours of the coexisting equilibrium are 
explored by considering delay as the bifurcating parameter. It is found that, delayed prey dispersal 
can potentially alter the stability (resp. instability), and even causes stability switching (resp. 
instability switching) around the interior equilibrium. However, after some consecutive changes 
in stability, the equilibrium undergoes instability for larger delay. Analysis of the stability is 
performed by estimating the distance between critical values of the time delay. In addition, 
numerical examples are provided to illustrate the findings.
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1 Introduction
Establishing mechanisms to understand the interactions 
between species in ecological systems are very complex. 
Starting from the third decade of nineteenth century, 
several pioneer scientists developed mathematical mod-
els to explore dynamics between prey and predator 
[1–6]. These classical models have been investigated 
further by making use of fractional-order systems 
[7–8], square root functional response [9], nonlinear 
harvesting strategies [10–11], etc. in the recent years. 
Successive developments, including time delay para-
meters in the models appeared in population dynamics 
to capture more complex and realistic scenarios 
[12–15]. The time delay factors evolved due to gestation, 
maturity, predation response, and other factors in many 
real ecological systems. Several articles in the current 
decades studied the effects of time delay on the stability 
of steady state in predator-prey models. Li and Takeuchi 
[16], proved that delay does not have any destabilizing 
effect in a model having Beddington-DeAngelis func-
tional response. Jana and Roy [17], have incorporated 
two delays in a Holling-Tanner predator-prey model 
with Beddington-DeAngelis functional response and 
detected stability switching with respect to the gestation 
delay. In a class of predator-prey models, it was demon-
strated that delay always had a destabilizing effect [18]. 

An improved modelling approach in a stage-structured 
community, Banerjee and Takeuchi [19], established 
that maturation delay could enhance stability of the 
equilibrium. Anacleto and Vidal [20], have studied 
a delayed predator-prey model combined with type II 
response function and Allee effect. They established that 
the stability switching scenario happens due to the 
increasing values of time delay parameter. It is worth-
while to note that, the delay induced stability is studied 
when the equilibrium of the above non-delayed models 
are locally stable. On the other hand, when the equili-
brium of the non-delayed models are unstable, increas-
ing time delay does not have any influence to stabilize 
the solutions [21]. Shu et al. [22], have studied a delayed 
intraguild community and found that if the system is 
unstable prior to incorporation of delay, either the delay 
has no effect in changing the instability or instability 
switching can occur. Souna et al. [23], have studied 
a delayed predator-prey model with a single predator 
group feeding upon two different prey groups: grouped 
prey and solitary prey. The growth term of the grouped 
prey involved time lag. They discussed the effect of time 
delay in the stability of the periodic solution of the 
system. Chen et al. [24], have studied the combined 
effects of time delay and impreciseness on the stability 
of a two-species competition model. They concluded 
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that under certain conditions, time delay does not have 
a significant role in the stability of the system as com-
pared to the fuzziness of biological parameters.

Interactions between predator and prey are not only 
limited to a single patch. The movement of species from 
one place to another is an indispensable part of ecology. 
Various factors like food availability, competition, safe 
breeding, environmental changes, predation, etc., lead 
to movement of the predators or prey from one patch to 
another. Thus, spatial models (patchy models) find their 
popularity in stability analysis [25–28], fishery manage-
ment [29–30], biological pest control [29–31].

Travel time of species between patches cannot be 
ignored while dealing with spatial systems. Hence, 
incorporating time delay in dispersal is more appropri-
ate in modelling. Takeuchi [32], proposed a single- 
species patchy model using autonomous equations. 
They have established that delay has no impact in desta-
bilizing the coexisting equilibrium (which is globally 
stable in the absence of delay). Sun and Mai [33], have 
considered a two-species competition model over multi-
ple patches. They have shown that the delayed dispersal 
does not effect the stability and instability of the coex-
istence equilibrium. On the other hand, Xu et al. [34], 
have designed a two-patch prey-predator model with 
prey dispersal. The delay is incorporated in gestation as 
well as in functional response. They have proved that 
the increasing delay causes instability. Likewise, non- 
spatial models, the stability results in patchy models 
were derived by Takeuchi et al. [32] and Xu et al. [34], 
when the coexisting equilibrium is asymptotically stable 
without time delay.

Recently, a very limited number of articles have paid 
attention to analyse delay-induced stability in spatial 
models when the coexisting steady state is unstable 
without delay. Zhang et al. 35, have considered the 
predator-induced prey dispersal where the dispersal 
was based on the predation risk of the prey. They have 
incorporated the delay in its dispersal term. It was found 
that, incorporation of time delay can destabilize (resp. 
stabilize) a stable (resp. unstable) coexisting equili-
brium. Several stability switching phenomena were illu-
strated by computational simulations in a two-patch 
predator-prey model with delayed dispersal on both 
predator and prey [36]. Later, Mai et al. [37], have 
considered the predator dispersal and explained switch-
ing of stability analytically when the coexisting equili-
brium of the non-delayed model was unstable. It was 
also proved that delay had no influence in altering the 
stability when the equilibrium was stable.

Obviously, a limited literature has investigated the 
impacts of dispersal delay in spatial models. Henceforth, 
a need arises, to study in greater depth, the effect of 

dispersal delay in predator-prey models. Further, the 
spatial models mentioned in the above discussion were 
formulated based on the concept of patchy model, in 
which populations can disperse between distinct loca-
tions or regions. Another popular framework to develop 
spatial population model is to make use of partial differ-
ential equations (i.e. reaction-diffusion models). It is 
important to note that the population dynamics using 
reaction-diffusion systems are defined in a domain. 
Therefore, populations do not disperse between two 
distinct locations. Consequently, incorporating the 
time-lag in dispersal is not found in the existing reac-
tion-diffusion models. For instance, we cannot include 
time delay in the diffusion terms of the models studied 
by Polyanin and Zhurov [38] and Dos Anjos [39]. On 
the other hand, time delay can easily be plugged into the 
dispersal terms for patchy models. Hence, investigating 
the influence of delayed dispersal in population 
dynamics through patchy models could be an alterna-
tive option to consider in comparison to the reaction- 
diffusion systems. Our main objective is to develop 
a two-patch predator-prey model with new kind of 
prey-dispersal process. Further, we would like to study 
the positivity and boundedness of the solutions to our 
model. We examine whether time delay in dispersal has 
any effect on the stability of the coexisting equilibrium. 
We also compare our results with the existing contribu-
tions and reveal the future scope in this direction.

The rest of the article is divided into three sections. 
Section 2 deals with the formulation of our model. In 
Section 3, the positivity and boundedness of the solu-
tions of our model is discussed. In Section 4.1, we 
evaluated the stability of the model in the absence of 
delay. In Section 4.2, we have analyzed the delayed 
model taking delay as the bifurcation parameter. The 
effect of dispersal in the stability of the system was also 
analyzed in this section. Finally, in Section 5 we have 
concluded by stating all our results.

2 Model formulation

We deal with a two-patch predator-prey model with 
prey dispersal. In each patch, the prey species, in the 
absence of predators, grow logistically. We assume that 
the predators in each patch are specialist and decay 
exponentially in the absence of prey. The predator– 
prey interaction in each patch is described with 
Holling type II functional response. In the absence of 
predator, the prey species follow density-independent 
dispersal between patches. However, in the presence of 
predators, the prey should avoid predation pressure. 
Hence, movement of prey should be influenced by pre-
dator. Hence, we have incorporated predator-influenced 
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prey dispersal in our model. The prey populations tend 
to move more in number from their own patch when 
the number of predator is higher in the same patch. It is 
fairly acceptable that spatial range of prey is smaller than 
predator. If the patches are not too close to each other, 
a travel time should be involved in the movement pro-
cess of prey from one patch to another. Hence, a time 
delay is now included to more realistically capture the 
dispersal mechanism. Based on the above assumptions, 
we formulate the following strategic model: 

_x1 ¼ rx1 1 �
x1

K

� �
�

ax1y1

hþ x1
þ D α

ρy2ðt � τÞ
Lþ y2ðt � τÞ

þ ð1 � αÞ
� �

x2ðt � τÞ

� D α
ρy1

Lþ y1
þ ð1 � αÞ

� �

x1;

_y1 ¼
bx1y1

hþ x1
� my1;

_x1 ¼ rx2 1 �
x2

K

� �
�

ax2y2

hþ x2
þ D α

ρy1ðt � τÞ
Lþ y1ðt � τÞ

þ ð1 � αÞ
� �

x1ðt � τÞ

� D α
ρy2

Lþ y2
þ ð1 � αÞ

� �

x2;

_y1 ¼
bx2y2

hþ x2
� my2;

(1) 

where x1ðθÞ; x2ðθÞ; y1ðθÞ; y2ðθÞ � 0 and continuous on 
θ 2 ½� τ; 0Þ, x1ð0Þ; x2ð0Þ; y1ð0Þ; y2ð0Þ> 0. Here xiðtÞ and 
yiðtÞ are the number of prey and predator populations, 
respectively, at time t in the i-th patch ði ¼ 1; 2Þ. The 
intrinsic growth rate and carrying capacities of the prey, 
in the two patches, are denoted by r and K, respectively. 
Here a is the attack rate during predation and b ¼ ac 
where c is the conversion coefficient of prey biomass 
into predator. We define m as the specific mortality rate 
of predator and h as the half-saturation constant.

Density-independent dispersal of prey species in the 
dynamics of x1ðtÞ can be defined as D x2 � x1ð Þ, where D 
is the inherent dispersal rate of the prey. Clearly, Dx2 
amount prey population from patch 2 contributes to the 
dynamics of x1 in the patch 1. On the other hand, Dx1 is 
the measure of prey leaving the patch 1 and contributes 
to the dynamics of x2 in the second patch. Similarly, 
D x1 � x2ð Þ is the density-independent dispersal term in 
the dynamics of x2 in the patch 2. Such density- 
independent dispersal is very common in theoretical 
models. Some significant attentions were also paid to 
develop and analyze models involving the impact of 
density-dependent dispersal [25–26–40]. However, 
only Zhang et al. [35], have proposed density- 
dependent dispersal among prey with time delay and 
a density-dependent dispersal model was formulated 
due to the predator-avoidance factor of prey species. 
We have proposed similar type of density-dependent 
dispersal in model (1) to examine how time delay can 
change the dynamics.

We now describe the density-dependent dispersal 
proposed in the model (1). We assume that the prey 
species x1 moves from the patch 1 to avoid predation 
and the movement depends upon the density of y1 in the 
respective patch. The predator-influenced dispersal of 
prey in patch 1 is proportional to y1

Lþy1
x1. Similarly, 

y2
Lþy2

x2 is linked with the dispersal of prey in 
the second patch. Here, we assume L is a parameter 
with the same dimension of biomass and control the 
dispersal rate at a maximum limit. When the predator is 
large in number, y1

Lþy1
! 1: Now we can write the den-

sity-dependent dispersal term, without time delay, in 
the dynamics of x1 as 

D
ρy2

Lþ y2
x2 �

ρy1

Lþ y1
x1

� �

;

where ρ is a proportionality constant. When the disper-
sal is not instantaneous, incorporation of travel time τ 
converts the dispersal term as 

D
ρy2ðt � τÞ

Lþ y2ðt � τÞ
x2ðt � τÞ �

ρy1

Lþ y1
x1

� �

:

In the same way, we construct the dispersal term in the 
dynamics of x2 and incorporate the time delay in the 
density-dependent dispersal term. A constant α ð0 �
α � 1Þ has been plugged into our system, where α and 
ð1 � αÞ represent the weights of predator-dependent 
dispersal and density-independent dispersal, respec-
tively. When α ¼ 0 (resp. α ¼ 1), the prey populations 
follow only state-independent (resp. predator- 
influenced) dispersal between regions.

We have chosen the same value of the parameters in 
both the patches. Hence, both regions are homogeneous 
and populations would be in balanced dynamics in the 
absence of time delay. When travel time is taken into 
account in dispersal, the balanced dynamics could be 
lost. We now investigate how the delay can change the 
stability due to the new dispersal framework.

3 Positivity and boundedness

In this section, we would like to show two qualitative 
features of the spatially coupled system. It is relatively 
easy to show positivity and boundedness of the solu-
tions in Gauss-type predator-prey models. Because of 
the presence of dispersal, the spatial model cannot be 
written in Gauss-type form. Therefore, it is interesting 
to establish the following propositions.

Preposition 3.1. The solution of system (1) starting 
from xið0Þ> 0; yið0Þ> 0, ði ¼ 1; 2Þ is positive. 
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Proof. Note that the dynamics of predator equations 
follow Gauss-type form. Hence, the solution yiðtÞ can 
be written as 

yiðtÞ ¼ yið0Þe

ð t

0 � mþ bxiðsÞ
hþxiðsÞ

� �

> 0 for all t > 0:

Now let us suppose that, the solution xiðtÞ’s are not 
positive for all t > 0. Since xið0Þ> 0, so there exist 
a least t ¼ t� > 0 such that either (i) x1ðt�Þ ¼ 0, (ii) 
x2ðt�Þ ¼ 0 or (iii) both x1ðt�Þ ¼ x2ðt�Þ ¼ 0. We first 
assume the third case x1ðt�Þ ¼ x2ðt�Þ ¼ 0. Then, for t 2
½0; t�Þ we have x1ðtÞ; x2ðtÞ> 0. Now 

_xi � � xiðtÞ r
xiðtÞ

K
þ

ayiðtÞ
hþ xiðtÞ

þ D α
ρyiðtÞ

Lþ yiðtÞ
þ ð1 � αÞ

� �� �

;

where yiðtÞ> 0; i ¼ 1; 2.

Hence, by comparison theorem, we can write 

xiðtÞ � xið0Þe
�

ð t

0 rxiðsÞ
K þ

ayiðsÞ
hþxiðsÞ

� D α ρyiðsÞ
LþyiðsÞ

þð1� αÞ
� �n o

ds
> 0:

Since xiðtÞ is continuous, so xiðt�Þ ¼ xiðt� � 0Þ> 0, 
which is a contradiction to our assumption that 
xiðt�Þ ¼ 0. Thus, the solution xiðtÞ> 0 for all t > 0. 
A similar justification can be applied to prove the case 
(i) and (ii). Therefore, the solution is positive.

□
Preposition 3.2. The solutions of system (1) starting 

from xið0Þ; yið0Þ> 0, ði ¼ 1; 2Þ are bounded. 

Proof. We prove the boundedness of the solutions 
xiðtÞ; yiðtÞ, ði ¼ 1; 2Þ by contradiction.

Let us assume that y1ðtÞ is unbounded. Then, there 
exists a t > t1 such that y1ðtÞ> N, where N > 0 is suffi-
ciently large. Consequently, the first equation of system 
(1) reduces to 

_x1ðtÞ � �
ax1ðtÞy1ðtÞ
hþ x1ðtÞ

< 0:

Thus, x1ðtÞ is a decreasing function in time. We now 
fix a t > t2; ðt2 > t1Þ such that x1ðtÞ ! 0. Then, for t > t2, 
the second equation of system (1) takes the form 

_y1ðtÞ ¼
bx1ðtÞ

hþ x1ðtÞ
� m

� �

y1ðtÞ � � my1ðtÞ< 0:

This implies that y1ðtÞ ! 0 for increasing time, 
a contradiction. A similar argument can be provided 
for y2ðtÞ. Thus, y1ðtÞ and y2ðtÞ can never be unbounded.

Now, suppose x1 is unbounded. Then, there exists a 
t3 such that for all t > t3, the first equation of system (1) 
can be approximated as 

_x1ðtÞ � � r
x2

1ðtÞ
K

;

since for large values of x1ðtÞ, the quadratic term is 
dominant over other terms. This implies that x1 is 
decreasing, which is contradicting the fact that x1ðtÞ is 
unbounded. Similar arguments can be presented for 
x2ðtÞ. Thus, all solutions of system (1) are bounded. □

4 Model analysis

The two patches in system (1) are identical in nature in 
the absence of dispersal. The dynamics of the system (1) 
in absence of dispersal ðD ¼ 0Þ is discussed by Sun and 
Mai [36], Mai et al. [37]. The system (1) have three 
equilibrium: the trivial equilibrium ð0; 0; 0; 0Þ, the 
boundary equilibrium ðK; 0;K; 0Þ and the co-existence 
equilibrium ðx�1; y�1; x�2; y�2Þ, where x�1 ¼ x�2 ¼ mh

b� m :¼ x�

and y�1 ¼ y�2 ¼ r
a 1 � x�

K

� �
ðhþ x�Þ :¼ y�. The coexisting 

equilibrium exists when 0<m< Kb
hþK . The stability ana-

lysis of these steady states is followed from single- 
isolated Rosenzweig-MacArthur model. Besides these 
three equilibrium, when the dispersal is in action, the 
model has two more boundary equilibria: ð�x; 0; x�;�yÞ
and ðx�;�y; �x; 0Þ, where �x; �y are positive. One can easily 
establish that these equilibria are unstable in our model. 
We are interested in studying the dynamics of the sys-
tem (1) around the coexisting equilibrium. Linearizing 
the system (1) around the coexisting equilibrium, we get 

_x1 ¼ ðA � MÞx1 � a
x�

hþ x�
þ C

� �

y1 þMx2ðt � τÞ

þ Cy2ðt � τÞ;

_y1 ¼
hby�

ðhþ x�Þ2
x1;

_x2;¼ ðA � MÞx2 � a
x�

hþ x�
þ C

� �

þMx1ðt � τÞ þ Cy1ðt � τÞ;

_y2 ¼
hby�

ðhþ x�Þ2
x2;

(2) 

where
A ¼ r � 2rx�

K �
ahy�

ðhþx�Þ2
, 

M ¼ D α ρy�
Lþy� þ ð1 � αÞ

� �
> 0, C ¼ Dαρ Lx�

ðLþy�Þ2
> 0.

To obtain the characteristic equation, we look for 
a non-trivial solution in the form of 

X ¼ Ĉeλt; (3) 

where X ¼ ðx1 y1 x2 y2Þ
T and Ĉ ¼ ðĈ1 Ĉ2 Ĉ3 Ĉ4Þ

T 

is a non-trivial vector of arbitrary constants. Here λ is 
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a parameter, called eigenvalue, which needs to be deter-
mined later. Substituting equation (3) into the system 
(2), we obtain JĈ ¼ 0, where the matrix J is given by 

J ¼ J1 J2
J2 J1

� �

(4) 

with

J1 ¼
A � M � λ � a x�

hþx� � C
bhy�

ðhþx�Þ2
� λ

 !

and J2 ¼
Me� λτ Ce� λτ

0 0

� �

.

In order to obtain a non-trivial solution (i.e., λ) of the 
equation JĈ ¼ 0, we impose the condition detðJÞ ¼ 0. 
Since detðJÞ ¼ detðJ1 þ J2Þ detðJ1 � J2Þ, thus, we have 
either detðJ1 þ J2Þ ¼ 0 or detðJ1 � J2Þ ¼ 0, or both of 
them are zero. These facts produce the following two 
characteristic equations: 

λ2 � A � Mð Þλþ Bþ N � Mλþ Nð Þe� λτ ¼ 0; (5) 

λ2 � A � Mð Þλþ Bþ N þ Mλþ Nð Þe� λτ ¼ 0; (6) 

where B ¼ hby�

ðhþx�Þ2
ax�

hþx� > 0 and N ¼ bhy�

ðhþx�Þ2
C > 0.

Based on the nature of the solution of the character-
istic equation, we can determine the state of the system.

4.1 Analysis of the non-delayed model

We first consider the case when the dispersal from one 
patch to another is instantaneous (i.e., τ ¼ 0). The char-
acteristic equations reduce to 

λ2 � Aλþ B ¼ 0;
λ2 � ðA � 2MÞλþ Bþ 2N ¼ 0:

(7) 

If A< 0, then the roots of the characteristic equation (7) 
have no positive real parts and thus is asymptotically 
stable. However, when A > 0, two cases arises: (a) If 
A > 2M, then the roots of the characteristic equation 
(7) have four positive real parts, (b) If A< 2M, there 
exist two roots with positive real parts and two roots 
with negative real parts. However, the presence of posi-
tive real parts in the roots of the equation (7) indicates 
that the system will be unstable whenever A > 0.

4.2 Analysis of the delayed model

We now want to study the dynamics of the system (1) 
with respect to the time delay. Since the characteristic 
equations (5) and (6) are transcendental, we want to 
check if change of sign in the real part of the roots occur 
when τ varies. When τ ¼ 0, the four eigenvalues can be 
determined from quadratic equations. Hence, we know 

the position of the roots in the complex C-plane. Since 
change in the dynamics (viz. stability) will only take 
place when the roots cross the imaginary axis C

0 of 
the complex plane, we look for the existence of purely 
imaginary roots of equations (5) and (6) for some cri-
tical values of τ. Suppose there exists delay for which 
λ ¼ iω, ω > 0. Substituting λ ¼ iω into characteristic 
equation (5) and separating the real and imaginary 
parts, we obtain 

� ω2 þ Bþ N � Mω sin ωτ � N cos ωτ ¼ 0; (8) 

� ðA � MÞω � Mω cos ωτ þ N sin ωτ ¼ 0: (9) 

Equations (8) and (9) can further be written as 

cos ωτ ¼
� Nω2� ðA� MÞMω2þNBþN2

ðMωÞ2þN2 ¼: C1ðωÞ;

sin ωτ ¼ ANω� Mω3þMBω
ðMωÞ2þN2 ¼: S1ðωÞ:

(10) 

Adding squares of both equations into equation (10), we 
obtain 

ω4 þ ω2ðA2 � 2B � 2N � 2MAÞ þ BðBþ 2NÞ ¼ 0:
(11) 

Solving for ω2, we obtain 

ω2 ¼
1
2
ð2Bþ 2N þ 2MA � A2Þ �

ffiffiffi
Δ
pn o

;

where Δ ¼ ðA2 � 2B � 2N � 2MAÞ2 � 4Bð2N þ BÞ.
Hence, ω (if exist) has at most two positive value of 

the form 

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð2Bþ 2N þ 2MA � A2Þ �

ffiffiffi
Δ
pn o

r

: (12) 

Similarly, substituting λ ¼ iω, ω > 0 into characteristic 
equation (6), we obtain 

cos ωτ ¼ �
� Nω2� ðA� MÞMω2þNBþN2

ðMωÞ2þN2 ¼ � C1ðωÞ;

sin ωτ ¼ � ANω� Mω3þMBω
ðMωÞ2þN2 ¼ � S1ðωÞ:

(13) 

Obviously, the system (13) leads to the same value ω�:
Now, we determine the value of τ from equation (10) 

at which Hopf-bifurcation occurs. We define 

θþ ¼ cos� 1ðC1ðωþÞÞ 2 ð0; πÞ;

θ� ¼ cos� 1ðC1ðω� ÞÞ 2 ð0; πÞ:

When ω ¼ ωþ, 
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S1ðωþÞ ¼
ωþðNAþMB � Mω2

þÞ

N2 þM2ω2
þ

¼
ωþðNðA � MÞ � MAðM � A=2Þ � M

ffiffiffi
Δ
p

=2Þ
N2 þM2ω2

þ

:

It is difficult to determine the sign of S1ðωþÞ in full 
parameter space. Later, we compute the value of 
S1ðωþÞ for case basis along with simulation. The general 
form of critical delay at which the characteristic equa-
tion (5) will have purely imaginary roots are 

τþn;1 ¼
ð2π� θþÞ

ωþ þ 2nπ
ωþ ; if S1ðωþÞ< 0

θþ
ωþ þ

2nπ
ωþ ; if S1ðωþÞ > 0

(

(14) 

where n ¼ 0; 1; 2; . . .

On the other hand, when ω ¼ ω� , 

S1ðω� Þ ¼
ω� ðNAþMB � Mω2

� Þ

N2 þM2ω2
�

¼
ω� ðNðA � MÞ � MAðM � A=2Þ þM

ffiffiffi
Δ
p

=2Þ
N2 þM2ω2

�

:

Therefore, we compute 

τ�n;1 ¼
ð2π� θ� Þ

ω� þ 2nπ
ω� ; if S1ðω� Þ< 0

θ�
ω� þ

2nπ
ω� ; if S1ðω� Þ > 0

(

(15) 

where n ¼ 0; 1; 2; . . .

Consequently, we determine two sequences fτþn;1g
and fτ�n;1g from the relations (14) and (15), respectively 
for a fixed value of S1ðω�Þ. Hence, Hopf-bifurcation 
occurs at these values of delay due to the occurrence of 
purely complex eigenvalues in the characteristic equa-
tion (5).

In the similar way, we can find the two sequences of 
threshold values of τ at which characteristic equation (6) 
have purely imaginary roots � iω� as follows: 

τþn;2 ¼
ðπ� θþÞ

ωþ þ
2nπ
ωþ ; if S1ðωþÞ< 0

ðπþθþÞ
ωþ þ

2nπ
ωþ ; if S1ðωþÞ> 0

(

(16) 

where n ¼ 0; 1; 2; . . . and 

τ�n;2 ¼
ðπ� θ� Þ

ω� þ
2nπ
ω� ; if S1ðω� Þ< 0

ðπþθ� Þ
ω� þ

2nπ
ω� ; if S1ðω� Þ> 0

(

(17) 

where n ¼ 0; 1; 2; . . .

Hence, we obtain another two sets of critical values at 
which the characteristic equation (6) has purely imagin-
ary roots. Finally, we present the following results.

Result: When ω� exist, the model experience Hopf- 
bifurcation at each value fτ�n;1g and fτ�n;2g, 
where n ¼ 0; 1; 2; . . .

Generally, Hopf-points (critical thresholds of time 
delay parameter) are the indicators of generating (or 

descrying) cyclic dynamics in our spatial system. 
Ecologically, once the delay parameter crosses a critical 
value to produce a stable coexisting equilibrium, all the 
populations maintain a positive stock in long run with 
no variation. On the other hand, the populations exhibit 
oscillations when the delay crosses a Hopf-point to 
induce instability around the coexisting equilibrium. 
However, populations experience non-equilibrium 
dynamics when the value of the Hopf-points are larger 
than a certain critical threshold.

Now, we examine if the eigenvalues on C
0 change 

their signs when delay crosses the threshold 
values τ ¼ τ�n;j; j 2 f1; 2g.

Differentiating characteristic equation (5) w.r.t. τ, we 
obtain 

2λ � ðAþMÞ þ τe� λτðMλþ NÞ � Me� λτ� � dλ
dτ
þ

ðMλþ NÞλe� λτ ¼ 0:
(18) 

Thus, 

dλ
dτ

� �� 1

¼
Me� λτ þ ðAþMÞ � 2λ
ðMλþ NÞλe� λτ �

τ
λ
: (19) 

From equation (5), we found 

eλτ ¼
Mλþ N

λ2 � ðA � MÞλþ Bþ N
:

Using the above fact, 

sign
dðReλÞ

dτ

� �

τ¼τ�n;1

( )

¼ sign Re
dλ
dτ

� �� 1
" #

τ¼τ�n;1

8
<

:

9
=

;

¼ sign Re
M

ðMλ2þNλÞ

þ
ðA� MÞ� 2λ

λ3� ðA� MÞλ2þðBþNÞλ

" #

λ¼iω�

8
<

:

9
=

;

¼ sign � M2 þ ðA � MÞ2 � 2ðBþ N � ω2
�Þ

� �

¼ signf�
ffiffiffi
Δ
p
g:

Similarly, when τ ¼ τ�n;2, from characteristic equa-
tion (6), we get 

sign
dðReλÞ

dτ

� �

τ¼τ�n;2

( )

¼ signf�
ffiffiffi
Δ
p
g: (20) 

Hence, we obtain the transversality conditions 
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dðReλÞ
dτ

� �

τ¼τþn;1; τþn;2

> 0 and
dðReλÞ

dτ

� �

τ¼τ�n;1; τ�n;2

< 0:

Also, it is easy to verify from equation (18) that the 
purely imaginary roots ω� are simple. As 
a consequence, a pair of eigenvalues will enter into C

þ

(resp. C
� ) when τ increases through τþn;1; τþn;2 (resp. 

τ�n;1; τ�n;2). However, there is no specific rule to count 
the number of eigenvalues for the characteristic equa-
tions in C

� when delay is varied. We shall show that 
increasing delay can generate many eigenvalues with 
negative real part. On the other hand, the number of 
eigenvalues in C

þ will increase or decrease by 2 when 
delay passes through critical threshold. This fact is true 
from the following Lemma due to Cooke and 
Grossman [41]. 

Lemma 4.1 [41] Let f ðλ; τÞ ¼ λ2 þ d1λþ d2λe� λτ 

þ d3 þ d4e� λτ , where di’s ði ¼ 1; 2; 3; 4Þ and τ are real 
numbers and τ > 0. Then, as τ varies, the sum of the 
multiplicities of zeros of f in the open right half-plane 
can change only if a zero appears on or crosses the 
imaginary axis.

Overall the above methodology would be implemen-
ted to understand stability change phenomenon due to 
the change of time delay parameter. In our analysis, 
members of the sequences of critical delays would be 
arranged in ascending order irrespective of their indices. 

Remark 4.1. Since ωþ > ω� , τþnþ1;j � τþn;j ¼ 2π
ωþ <

2π
ω� ¼

τ�nþ1;j � τ�n;j i.e. the distance between two consecutive 
τþn;j is less than the distance between two consecutive 
τ�n;j. So, it is trivially clear that, two consecutive members 
from the sequence fτþn;jg

1
n¼0 must lie between two con-

secutive members of fτ�n;jg
1
n¼0, for some n > n� 2 Zþ

and j ¼ f1; 2g. However, the opposite phenomenon 
never happen.

Remark 4.2. It can be noted that 
jτþn;j � τþn;kj ¼

π
ωþ <

π
ω� ¼ jτ

�
n;j � τ�n;kj, i.e. the distance 

between τ�n;j and τ�n;k is always greater than the distance 
between τþn;j and τþn;k for all n 2 Zþ

(j ¼ f1; 2g; k ¼ f1; 2g; j�k).

Remark 4.3. From Remark 4.1 and 4.2, it is clear that 
between any two consecutive thresholds from the 
sequence fτþn;jg

1
n¼0, there exist a threshold τþs;k which is 

equidistant from both the consecutive members of 
fτþn;jg

1
n¼0 where j�k and jn � sj ¼ 1 or n ¼ s. 

Similarly, between any two consecutive members from 
fτ�n;jg

1
n¼0, there exist a critical delay τ�s;k which is equi-

distant from both the two consecutive thresholds of 
fτ�n;jg

1
n¼0 where j�k and jn � sj ¼ 1 or n ¼ s. 

Mathematically, we can write 
jτþn;j � τþs;kj ¼

π
ωþ <

π
ω� ¼ jτ

�
n;j � τ�s;kj, where j�k with 

suitable indices n and s such that jn � sj ¼ 1 or n ¼ s.

So we can conclude from Remark 4.1–4.3 that two 
consecutive thresholds from fτþn;1g

1
n¼0 [ fτ

þ
n;2g

1
n¼0 must 

lie between two consecutive thresholds from fτ�n;1g
1
n¼0 [

fτ�n;2g
1
n¼0 after some n > n� 2 Zþ. This key information 

is the backbone to analyze the stability in our delayed 
model. We now present two different situations based 
on the stability of the identical patches.

4.2.1 The isolated patches are stable
In this case, we assume that A< 0, which indicates 
that the isolated patches are stable. It can be seen 
that when the isolated patches are stable, the com-
bined effect of instantaneous predator-influenced 
dispersal and density-independent dispersal have 
no effect in destabilizing the patches. Furthermore, 
it is mentioned by 35,that density-independent 
delayed dispersal (i.e., when α ¼ 0) cannot destabi-
lize the equilibrium alone. However, in the presence 
of combined dispersal, the system gets destabilized 
for increasing values of delay. We would like to 
explore the impacts of predator-influenced delay 
dispersal for several parameter ranges. To proceed 
further, we first establish the following Lemma. 

Lemma 4.2. Let A< 0 along with A2 < 2ðBþ N þMAÞ
and 4Bð2N þ BÞ< ðA2 � 2B � 2N � 2MAÞ2. Then, 
τþ0;j < τ�0;j ðj ¼ 1; 2Þ holds true.

Proof. Since A< 0, the characteristic equation of the 
non-delayed system (7) will have two pairs of eigenva-
lues in C

� plane. Also, A2 < 2ðBþ N þMAÞ and 
4Bð2N þ BÞ< ðA2 � 2B � 2N � 2MAÞ2 indicates that 
ω� will exist and corresponding critical delays too will 
come into existence. We assume that the condition 
τþ0;j < τ�0;j; ðj ¼ 1; 2Þ is not true. Let us assume that 
τþ0;j > τ�0;j; ðj ¼ 1; 2Þ. Without loss of generality, suppose 
that τ�0;1 be the least threshold among the four sequences 
where Hopf-bifurcation occurs. Note that no eigenvalue 
crosses C

0 from C
� to C

þ when τ 2 ½0; τ�0;1]. In addi-
tion, Lemma 4.2 alternatively suggests that no eigenva-
lue would be created in C

þ for varying delay within 
½0; τ�0;1]. However, by virtue of transversality condition, 
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one pair of eigenvalues having positive real parts cross 
C

0 and enter into C
� when delay exceeds τ�0;1. Since 

there is no eigenvalue in Cþ when τ ¼ 0, it is impossible 
to happen first Hopf-bufurcation when τ ¼ τ�0;j. Hence, 
τþ0;j < τ�0;j must be a true relation. □

We now present necessary conditions for destabiliza-
tion of the dynamics at equilibrium.

Theorem 4.1. When A< 0, the coexistence equilibrium 
E� is locally asymptotically stable in absence of dispersal 
delay τ. Due to increase in τ, three situations can occur:

(i) If A2 > 2ðBþ N þMAÞ or 
4Bð2N þ BÞ > ðA2 � 2B � 2N � 2MAÞ2, then the co- 
existence equilibrium E� of system (1) remains stable 
for all time delay;

(ii) If A2 < 2ðBþ N þMAÞ, 4Bð2N þ BÞ< ðA2 �

2B � 2N � 2MAÞ2 and τþ0;j < τ�0;j < τþ0;k 
(j ¼ f1; 2g; k ¼ f1; 2g; j�k), then the system under-
goes stability switching for a finite number of times;

(iii) If A2 < 2ðBþ N þMAÞ, 4Bð2N þ BÞ< ðA2 �

2B � 2N � 2MAÞ2 and the first two critical delays are 
τþ0;1 and τþ0;2, then the system undergo only stability 
change such that the system remains stable for 
τ < minfτþ0;1; τ

þ
0;2g but is unstable for all 

τ > minfτþ0;1; τ
þ
0;2g.

Proof. (i) The coexisting equilibrium is stable when τ ¼
0 i.e. the eigenvalues of the characteristic equations (5) 
and (6) are located in the C

� plane. Since A2 > 2ðBþ
N þMAÞ or 4Bð2N þ BÞ> ðA2 � 2B � 2N � 2MAÞ2, 
clearly ω� does not exist. It suggests that there does 
not appear any critical delay where Hopf-bifurcation 
can shift the eigenvalue from left half complex plane to 
right half one. As a result, the eigenvalues of the char-
acteristic equation (5) and (6) remains in the C

� plane 
for all τ > 0. Thus, the co-existing equilibrium remains 
stable for all time delay.

(ii) Conditions A2 < 2ðBþ N þMAÞ, 4Bð2N þ
BÞ< ðA2 � 2B � 2N � 2MAÞ2 ensure the existence of 
ω� and hence the four sequences of threshold values 
of τ. Again, Lemma 4.2.1 guarantees the relation 
τþ0;j < τ�0;j (j ¼ 1; 2). Also, from the values of τ�0;j com-
puted in (14), (15), (16) and (17), it is clear that either 
τþ0;2 < τþ0;1 (resp. τ�0;2 < τ�0;1) or τþ0;2 < τþ0;1 (resp. 
τ�0;2 < τ�0;1). So, the first Hopf-bifurcation needs to take 
place when τ ¼ τþ0;j (j ¼ 1 or 2). After the first Hopf- 
bifurcation, the multiplicity of eigenvalue in C

þ is two. 
Thus, the system becomes unstable after the first Hopf- 
bifurcation (a supercritical Hopf-bifurcation). As per 

our assumption τþ0;j < τ�0;j < τþ0;k (j; k ¼ f1; 2g; j�k), 
the second Hopf-bifurcation (a subcritical Hopf- 
bifurcation) occurs when τ ¼ τ�0;j. Hence, the multipli-
city of eigenvalue in C

þ will decrease to zero when τ 
increases through τ�0;j. Consequently, the system 
becomes stable once again after the second Hopf- 
bifurcation and the first stability switching have 
occurred. The third Hopf-bifurcation needs to occur 
when τ ¼ τþ0;k. The eigenvalue in C

þ will again become 
2 and instability occur in the system. Depending upon 
the distribution of threshold values, multiplicity of 
eigenvalue in C

þ will keep on changing to either 0 or 
2. Now we prove that number of stability switching is 
finite. From Remark 4.1–4.3, there must exist two con-
secutive thresholds from fτþn;1g [ fτ

þ
n;2g between two 

consecutive thresholds in fτ�n;1g [ fτ�n;2g for some 
n 2 Zþ. Thus, the multiplicity of the eigenvalue in C

þ

will change to 4 when delay increases. From the same 
Remark 4.1–4.3, it is clear that no two thresholds from 
fτ�n;1g [ fτ�n;2g can occur consecutively in between two 
consecutive thresholds in fτþn;1g [ fτ

þ
n;2g. Thus, the 

number of eigenvalues in C
þ cannot be reduced from 

2 for further increase in delay. Hence, instability will 
persist after some critical threshold and the number of 
switches become finite.

(iii) As stated above, the first two Hopf- 
bifurcation occurs at τ ¼ τþ0;j and τþ0;k. Thus, the 
multiplicity of eigenvalue in C

þ increase to 4 once 
delay exceeds the threshold at which second Hopf- 
bifurcation takes place. The system cannot gain its 
stability back as τ�n;j and τ�n;k can never occur con-
secutively as seen from the above analysis in case 
(ii) above. Thus, the instability will persist in the 
system for τ > minfτþ0;1; τ

þ
0;2g. □

We illustrate the possible of dynamics for varying 
delay through some examples for better understanding. 

Example 4.1 Invariant stability: In this example, we show 
that time delay cannot change the local asymptotic stabi-
lity for special combinations of both types of dispersal. 
We take the parameters as r ¼ 0:05; K ¼ 2:1; a ¼
0:08; b ¼ 0:07; h ¼ 1; m ¼ 0:03 in the system (1). 
Because of balanced dynamics between patches, the equi-
librium of the system is found to be 
ðx�1; y�1; x�2; y�2Þ ¼ ð0:75; 0:703; 0:75; 0:703Þ. Regardless 
the value of the dispersal parameters, this equilibrium is 
stable without time delay. We choose the dispersal para-
meters as L ¼ 1; α ¼ 0:7; ρ ¼ 1; D ¼ 10. It is found 
that there does not exist any positive ω for the given 
parameter set. As a result, no stability change happens 
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due to delay in dispersal. In addition, it can be seen that 
for any α 2 ½0; 0:701Þ, there exists no positive ω and as 
such the system remains stable for the given range of α. □

Example 4.2 Stability switching: We take the same 
parameter set with increase in the value of α from 0:7 to 
0:703. Now positive ω comes into existence since 
α � 0:701. Due to the existence of two positive ω, 
sequences of τ can be obtained at which Hopf- 
bifurcation takes place. The first five members of each 
sequence of the critical delays is given in Table 1:

The list of critical τ in increasing order is: 

τþ0;2 < τ�0;2 < τþ0;1 < τ�0;1 < τþ1;2 < τ�1;2 < τþ1;1 < τ�1;1 < τþ2;2 < τ�2;2
< τþ2;1 < τþ3;2 < τ�2;1 < τþ3;1 < τ�3;2 < τþ4;2 < . . .

The first Hopf-bifurcation occurs when τþ0;2 ¼ 37:984 
and hence a pair of eigenvalues from the C

� plane will 
enter the C

þ plane. Henceforth, the equilibrium of the 
system becomes unstable. Now, the second Hopf- 
bifurcation occurs when τ�0;2 ¼ 45:2423. Thus, the pair 
of eigenvalue from the Cþ plane will enter the C � plane, 
leaving behind no eigenvalue in the C

þ plane. 
Consequently, the system restores back its stability. 
Again when τ is increased and reaches its critical value 
τþ0;1 ¼ 76:1244, instability rebounds. With further 
increase in τ to τ�0;1 ¼ 90:6352, the system restores its 
stability. Such change from stable to unstable and back 
to stable continues till τ ¼ τþ2;1, after which, appearance 
of two consecutive τþ2;1 and τþ3;2 will increase the multi-
plicity of eigenvalue with positive real parts in C

þ and 
the system can never regain its stability. The persistence 
of instability can be explained from the following fact 
(see equations (14)-(17)): 

τ�nþ1;1 � τ�n;1 ¼ τ�nþ1;2 � τ�n;2 ¼
2π
ω�
� 90:79;

τþnþ1;1 � τþn;1 ¼ τþnþ1;2 � τþn;2 ¼
2π
ωþ
� 76:27;

jτ�n;1 � τ�n;2j ¼
π

ω�
� 45:3929;

and 

jτþn;1 � τþn;2j ¼ jτ
þ
2;1 � τþ3;2j ¼

π
ωþ
� 38:1404:

It can be observed that the distance between two 
consecutive threshold from the fτþn;1g and fτþn;2g are 
the least among all. When the stability switches occur, 
the multiplicities of eigenvalues in C

þ vary between 0 
and 2. A situation must exist for which two consecutive 
critical delays from the class fτþn;1g [ fτ

þ
n;2g will occur 

consecutively. Here in this example, τþ2;1 and τþ3;2 are 
occurring consecutively. Thus, the multiplicity of eigen-
values in C

þ increases to 4. In order to restore the 
stability, two consecutive threshold from fτ�n;1g and 
fτ�n;2g have to appear just right after the two consecutive 
τþ2;1 and τþ3;2. But from Remark 4.1–4.3, it is clear that no 
two threshold from fτ�n;1g and fτ�n;2g can appear con-
secutively. As a consequence, once delay exceeds τþ3;2, 
there would be an increase of eigenvalue to 4 which can 
never decrease to 0. Thus instability phenomenon con-
tinues after delay crosses τþ2;1.

Finally, we can observe that stability persists when 

τ 2 ð0; τþ0;2Þ [ ðτ
�
0;2; τ

þ
0;1Þ [ ðτ

�
0;1; τ

þ
1;2Þ [ ðτ

�
1;2; τ

þ
1;1Þ

[ ðτ�1;1; τ
þ
2;2Þ

and instability persists when 

τ 2 ðτþ0;2; τ
�
0;2Þ [ ðτ

þ
0;1; τ

�
0;1Þ [ ðτ

þ
1;2; τ

�
1;2Þ [ ðτ

þ
1;1; τ

�
1;1Þ

[ ðτþ2;2; τ
�
2;2Þ [ ðτ

þ
2;1;1Þ:

In this illustration, stability switching occurs 5 times in 
the system. □

Example 4.3 Stability change: In particular, when 
weight on the density dependent-dispersal is 20% (i.e., 
α ¼ 0:8), there exist two positive ω. Consequently, we 
can construct four sequences of τ at which Hopf- 
bifurcation occurs. We provide the first three members 
of each sequences in Table 2.

The list of critical τ in increasing order are: 

τþ0;2 < τþ0;1 < τþ1;2 < τ�0;2 < τþ1;1 < . . .

The least entry of the above list is τþ0;2 ¼ 20:6883 and 
hence two eigenvalues enter into Cþ as increasing delay 
crosses τþ0;2. Hence, the equilibrium of the system 
becomes unstable due to varying delay. There exist 
only two eigenvalues with positive real part of the char-
acteristics equations when τ 2 ðτþ0;2; τ

þ
0;1Þ. However, 

Table 1. The critical time delays are presented for up to n ¼ 4.

τþn;1 τ�n;1 τþn;2 τ�n;2
τþ0;1 � 76:1244 τ�0;1 � 90:6352 τþ0;2 � 37:984 τ�0;2 � 45:2423
τþ1;1 � 152:405 τ�1;1 � 181:421 τþ1;2 � 114:265 τ�1;2 � 136:028
τþ2;1 � 228:686 τ�2;1 � 272:207 τþ2;2 � 190:546 τ�2;2 � 226:814
τþ3;1 � 304:967 τ�3;1 � 362:993 τþ3;2 � 266:826 τ�3;2 � 317:6
τþ4;1 � 381:248 τ�4;1 � 453:779 τþ4;2 � 343:107 τ�4;2 � 408:386

Table 2. The critical time delays are presented for up to n ¼ 2.

τþn;1 τ�n;1 τþn;2 τ�n;2
τþ0;1 � 41:5605 τ�0;1 � 155:477 τþ0;2 � 20:6883 τ�0;2 � 77:676
τþ1;1 � 83:3049 τ�1;1 � 311:079 τþ1;2 � 62:4327 τ�1;2 � 233:278
τþ2;1 � 125:049 τ�2;1 � 466:68 τþ2;2 � 104:177 τ�2;2 � 388:879:
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four (resp. six) eigenvalues persist in C
þ for τ 2

ðτþ0;1; τ
þ
1;2; Þ (resp. ðτþ1;2; τ�0;2Þ) as two additional eigenva-

lues enter into Cþ at τþ0;1 (resp. τþ1;2Þ. On the other hand, 
when τ 2 ðτ�0;2; τ

þ
1;1Þ; only four eigenvalues remain in 

C
þ as two eigenvalues jump from C

þ into C
� at τ�0;2:

Thus, we conclude that the equilibrium is unstable for 
all τ 2 ðτþ0;2; τ

þ
1;1Þ.

We further explain that the system remains unstable 
for τ > τþ0;2: Theoretically, we observe from equations 
(14)-(17), that 

τ�nþ1;1 � τ�n;1 ¼ τ�nþ1;2 � τ�n;2 ¼
2π
ω�
� 155:609;

τþnþ1;1 � τþn;1 ¼ τþnþ1;2 � τþn;2 ¼
2π
ωþ
� 41:7444;

jτ�n;1 � τ�n;2j ¼
π

ω�
� 77:8045;

and 

jτþn;1 � τþn;2j ¼
π

ωþ
� 20:8722:

Since τþ0;2 and τþ0;1 are the first critical delay and second 
critical delay, respectively, so instability can be changed 
only when two τ�0;2 and τ�0;1 appear consecutively. But 
looking at the distances between them, it is impossible 
that two τ�0;2 and τ�0;1 appear consecutively. Henceforth, 
the system cannot get back its stability and remains 
unstable when τ > τþ0;2: □

It can be noted that when α ¼ 1 for the parameter 
set used in the above examples, the first and second 
bifurcation takes place at τþ0;2 ¼ 13:872 and τþ0;1 ¼
27:9833 respectively. Also, the difference between 
two consecutive threshold from fτþn;jg and fτþn;kg is 
found to be 14:1113 and the difference between two 
consecutive fτ�n;jg and fτþn;jg is found to be 103:012. 
So, the system remain stable when τ 2 ð0; 13:875Þ
and unstable when τ 2 ð13:875;1Þ. It can be seen 
that the stability range gets narrower when α is 
increased. Although the above examples depicts that 
α have impact on the stability of the delayed disper-
sal, but it is not always true. The example below 
supports our argument.

Example 4.4 We take the parameter set r ¼
0:05; K ¼ 1:1; a ¼ 0:08; b ¼ 0:07; h ¼ 1; m ¼ 0:03;
D ¼ 1, ρ ¼ 1 and L ¼ 1. Coexisting equilibrium is 
stable for non-delayed model. It was observed that irre-
spective of any value of α, there exist no positive ω. 
Thus, the system remains stable for all τ > 0. □

4.2.2 The isolated patches are unstable
When A > 0, the equilibrium in both the isolated patches 
is unstable. It can be seen that the instantaneous dis-
persal have no influence (follows from equation (5)-(6)) 
in stabilizing the patches when the isolated patches are 
unstable. We want to investigate if delayed dispersal 
have any role in stabilizing the system. The necessary 
conditions for the system to change its instability are 
stated in the next theorem. 

Theorem 4.2. When A > 0 and A > 2M, the interior 
equilibrium is unstable for all τ > 0.

Proof. When A > 0 and A > 2M, the two pair of eigenva-
lues from characteristic equation (7a) and (7b) for the 
non-delayed model are in the C

þ plane. Instability can 
be changed to stability only when the two pair of eigen-
values in C

þ plane shifts to C
� plane. This is possible 

only when two consecutive thresholds from fτ�n;1g [
fτ�n;2g (n 2 Zþ) occurs. From Remark 4.1–4.3, it is 
clear that no two consecutive threshold from fτ�n;1g [
fτ�n;2g can occur in between two consecutive threshold 
from fτþn;1g [ fτ

þ
n;2g. The only possibility is when τ�0;1 

and τ�0;2 occur consecutively which result the first 
and second Hopf-bifurcation.

Without loss of generality, we suppose that the first 
and second Hopf-bifurcations occur corresponding at 
τ�0;1 and τ�0;2, respectively. Now, from the computations 
provided in Eqns. (14)-(17), we obtain τ�0;1 ¼

θ�
ω� (since 

τ�0;2> τ�0;1). The value of τ�0;2 needs to be πþθ�
ω� . Now if 

τþ0;1 ¼
θþ
ωþ , then it is contradicting the fact that τ�0;2 is 

the second threshold delay since π
ω� > π

ωþ > θþ
ωþ . Also, if 

τþ0;1 ¼
2π� θþ

ωþ , then τþ0;2 ¼
π� θþ

ωþ , which is again contra-
dicting the fact that τ�0;2 is the second threshold delay, 

since π
ω� > π

ωþ > π� θþ
ωþ . Thus, τ�0;2 cannot be the second 

threshold delay.
Similar argument follows if we consider the first 

critical value as τ�0;2 and the second critical value as 
τ�0;1. Here τ�0;2 ¼

π� θ�
ω� . Also jτ�0;1 � τ�0;2j ¼ π

ω� : If 

τþ0;2 ¼
π� θþ

ωþ , then τþ0;2 must lies between τ�0;2 and τ�0;1 as 

jτ�0;1 � τ�0;2j ¼ π
ω� > π� θþ

ωþ . Also, if τþ0;2 takes the value 
πþθþ

ωþ , then corresponding τþ0;1 is θþ
ωþ , which must lie 

between τ�0;2 and τ�0;1. □ 

Theorem 4.3. When A > 0 and A< 2M, then the coex-
istence equilibrium E� experiences instability switching 
only when the following conditions are satisfied:
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(i) A2 < 2ðBþ N þMAÞ and 
4Bð2N þ BÞ< ðA2 � 2B � 2N � 2MAÞ2;

(ii) τ�0;1 < τþ0;1 ; τþ0;2 < τ�0;2 and τ�0;1 < τþ0;2 .

Otherwise, the equilibrium remains unstable for 
all τ > 0. 

Proof. Obviously, the characteristic equation (7a) yields 
a pair of eigenvalues with positive real parts and the 
characteristic equation (7b) yields a pair of eigenvalues 
with negative real parts when A > 0 and A< 2M. Clearly 
A2 < 2ðBþ N þMAÞ and 4Bð2N þ BÞ< ðA2 � 2B �
2N � 2MAÞ2 will lead to existence of purely imaginary 
roots � ω�.

When τ�0;1 < τþ0;1 ; τþ0;2 < τ�0;2 and τ�0;1 < τþ0;2, the pos-
sible combinations of the arrangement of the critical 
delays are: (a1) τ�0;1 < τþ0;2 < τ�0;2 < τþ0;1 and (a2) 
τ�0;1 < τþ0;2 < τþ0;1 < τ�0;2. In both the combinations, it can 
be seen that the first Hopf-bifurcation occurs when 
τ ¼ τ�0;1. After the first bifurcation, the equilibrium 
gets stable. The second bifurcation occurs when 
τ ¼ τþ0;2, after which, the system regains back its 
instability. Hence, at least one switching occurs. From 
Remark 4.1–4.3, we can claim that number of switches is 
finite.

Now, we show that the equilibrium is unstable when 
the thresholds do not follow condition (ii). Consider the 
case when τ�0;1 > τþ0;2. Then, the possible combinations of 
the arrangement of the critical delays are: (b1) 
τþ0;2 < τ�0;1 < τþ0;1 < τ�0;2 and (b2) τþ0;2 < τ�0;1 < τ�0;2 < τþ0;1. 
Since the distance between two τþn;j is always less than 
distance between two τ�n;j, so the case (b2) is invalid. 
Now in the case of (b1), the first Hopf-bifurcation 
occurs when τ ¼ τþ0;2. So the eigenvalues of (7b) enters 
the C

þ plane. Thus, the multiplicity of the eigenvalues 
in C

þ is 4. Now when τ ¼ τ�0;1, multiplicity of the roots 
having positive real parts in C

þ reduces to 2 and so the 
instability persists. Thus, we see that the multiplicity of 
the positive real part never reduces to 0 as two conse-
cutive members of fτ�n;1g [ fτ�n;2g can never occur. 
Henceforth, the system remains unstable throughout. □

Now, we present few examples to understand the 
dynamics of the equilibrium based on the conditions 
mentioned in the above theorems.

Example 4.5 Persistence of instability: To achieve our 
goal, we choose the parameter set as 
r ¼ 0:5; K ¼ 150; a ¼ 0:8; b ¼ 0:6; h ¼ 1; m ¼ 0:2. 
Since the equilibrium points of the system are indepen-
dent of the dispersal parameters, the coexisting equili-
brium is calculated as ð0:5; 0:934; 0:5; 0:934Þ. If we 
chose the dispersal rate D ¼ 1; L ¼ 1; ρ ¼ 1 and 
α ¼ 0:4, we obtain A< 2M as A ¼ 0:164444, M ¼
0:793215 . Consequently, in the absence of delay in the 
dispersal, both the roots of the characteristic equation 
(5) has positive real parts, but both the roots of the 
equation (6) has negative real parts. First few critical 
values of τ where Hopf-bifurcation takes place for 
increasing delay are given in Table 3:

The list of critical τ in increasing order are: 

τþ0;2 < τ�0;1 < τþ0;1 < τþ1;2 < τþ1;1 < τþ2;2 < τ�0;2 < τþ2;1 < . . .

It can be seen that first Hopf-bifurcation occurs when 
τþ0;2 ¼ 4:00375. As a result, both the roots of character-
istic equation (6) having negative real part cross the C

0 

at τþ0;2 ¼ 4:00375 and then enter the C
þ plane. No 

change in instability occurs when τ lies between τþ0;2 

and τ�0;1. When τ crosses τ�0;1 ¼ 4:1862, the C
þ plane 

contains exactly two roots with positive real parts. Thus, 
stability cannot be installed into the system even when 
τ 2 ðτ�0;1; τ

þ
0;1Þ. In a similar way, we can conclude that 

for τ 2 ðτþ0;1; τ
þ
1;2Þ no change in instability can be seen. 

Furthermore, it is observed that: 

jτ�n;1 � τ�n;2j ¼ jτ�0;1 � τ�0;2j ¼ π
ω� � 24:52655;

jτþn;1 � τþn;2j ¼ jτ
þ
0;1 � τþ1;2j ¼ π

ωþ � 5:1169:

It is clear that between the two consecutive threshold 
τ�0;1 and fτ�0;2g there exist more than one thresholds 
from fτþn;1g [ fτ

þ
n;2g. Further from Remark 4.1–4.3, it 

is clear that no two threshold from fτ�n;1g and fτ�n;2g can 
appear consecutively. Hence, at least one pair of eigen-
values will persist in C

þ when τ > τþ1;2: Thus, we can 
conclude that the instability cannot be altered due to 
succeeding delays. For the same parameter set, it is 
computed that no instability change can take place for 
α 2 ½0; 0:47Þ. □

Table 3. The critical time delays are presented for up to n ¼ 2.

τþn;1 τ�n;1 τþn;2 τ�n;2
τþ0;1 � 9:12063 τ�0;1 � 4:1862 τþ0;2 � 4:00375 τ�0;2 � 28:7127
τþ1;1 � 19:3544 τ�1;1 � 53:2393 τþ1;2 � 14:2375 τ�1;2 � 77:7658
τþ2;1 � 29:5881 τ�2;1 � 102:292 τþ2;2 � 24:4713 τ�2;2 � 126:819

Table 4. The critical time delays are presented for up to n ¼ 2.

τþn;1 τ�n;1 τþn;2 τ�n;2
τþ0;1 � 9:21512 τ�0;1 � 3:93668 τþ0;2 � 4:01408 τ�0;2 � 27:247
τþ1;1 � 19:6172 τ�1;1 � 50:5572 τþ1;2 � 14:4161 τ�1;2 � 73:8675
τþ2;1 � 30:0192 τ�2;1 � 97:1778 τþ2;2 � 24:8182 τ�2;2 � 120:488:
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Example 4.6 Instability switching: Taking the same 
parameter sets as in the example above along with 
α ¼ 0:5, we compute the first three critical values of τ 
for each sequence in the given Table 4.

The list of critical τ in increasing order are: 
τ�0;1 < τþ0;2 < τþ0;1 < τþ1;2 < τþ1;1 < . . . Unlike the earlier 
cases, τ�0;1 is the least member in the table. When τ 
crosses τ�0;1 ¼ 3:93668, two eigenvalues corresponding 
to the equation (5) enter the C

� plane. Thus, coexisting 
equilibrium of the system becomes stable. But when τ 
crosses τþ0;2, the system restores instability. Again when 
τ ¼ τþ0;1 and τþ1;2, a pair of eigenvalue from the C � enters 
the C

þ and the instability does not change. Thus, 
a switching of instability occurs in the dynamics. 
Using similar arguments mention in the earlier 

discussion, the equilibrium is unstable for τ > τþ0;2:
Thus, the system becomes stable when τ 2 ðτ�0;1; τ

þ
0;2Þ

and becomes unstable when τ 2 ½0; τ�0;1Þ [ ðτ
þ
0;2;1Þ. 

The instability switching pattern is presented in Figure 
1 by choosing three τ viz. τ ¼ 3:6; 4; 4:4. The unstable 
solution for τ ¼ 3:6 2 ½0; τ�0;1Þ is depicted in Figure 1a 
whereas the stable solution for τ ¼ 4 2 ðτ�0;1; τ

þ
0;2Þ is 

provided in Figure 1b. We choose τ ¼ 4:4 > τþ0;2 to 
achieve oscillatory solution in Figure 1c. □

It can be seen from Example 4.6 that the system is 
stable when τ 2 ðτ�0;1; τ

þ
0;2Þ. The range of the critical 

delays within which the co-existing equilibrium is stable 
is jτ�0;2 � τþ0;1j � 0:0774, which is a narrow range. But 
when α is increased, the range of the critical delays 
within which stability occurs gets increased. Further, 

Figure 1. Taking the set of parameters from Example 4.6 with the initial conditions ð0:45; 0:85; 0:45; 0:85Þ, solutions of the spatially 
coupled system (1) are plotted for (a) τ ¼ 3:6, (b) τ ¼ 4, (c) τ ¼ 4:4. We have shown the time response of x1ðtÞ and y1ðtÞ only as x2ðtÞ
and y2ðtÞ also exhibit the same stability and oscillatory behavior for a fixed delay.
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when α is increased to its maximum value 1, the range of 
the critical delays within which the system is stable is the 
longest, measuring jτ�0;2 � τþ0;1j � 0:83425.

5 Conclusion

Our model comprised of two isolated identical 
Rosenzweig-MacArthur model in which dispersal of 
prey species between patches follow both density- 
independent and density-dependent patterns. Since the 
movement from one patch to another takes time, a time- 
lag was incorporated in the dispersal. Analytically, we 
have proved that all the solutions of the delayed system 
are positive and bounded. We have shown that when the 
dispersal was instantaneous, equilibrium in our two- 
patch strategic model was stable (resp. unstable) if the 
equilibria in the isolated patches were stable (resp. 
unstable). Hence, the instantaneous prey dispersal did 
not have any effect in changing the stability of the 
equilibrium. This result is in well agreement with 
Hauzy et al. [26].

Taking the delay as the bifurcating parameter, we 
have analyzed the two cases viz. (i) when the isolated 
systems (equilibria) were stable, (ii) when the isolated 
systems were unstable. Mai et al. [37], analyzed their 
model for predator dispersal analytically to show the 
jumps of eigenvalues from C

þ to C
� and vice-versa by 

constructing a very special sequence. In our study, we 
have used the distances between critical delays to estab-
lish the stability. When the isolated patches were stable, 
following three cases could occur:

(i) the connected system could remain stable for all 
time delay,

(ii) the connected system could have stability switching,
(iii) the connected system could change its stability 

once.
It is to be noted that results (i) and (iii) are also observed 

by Zhang et al. [35]. We have explained the stability 
switching result (ii) for our model in a great detail.

Numerical simulations were provided to explain the 
dynamics of all the three cases. It was observed that the 
weight parameter α plays a very crucial role in the stability 
of the system. When the value of α is larger, predator- 
influenced prey dispersal and larger time delay together 
can cause non-equilibrium dynamics (See Examples 
4.1–4.3). Consequently, predators may face uncertainty 
in searching their resources to maintain their steady 
density. If the patchy model is considered as a marine 
ecosystem, uncertain yield (due to the non- 
nonequilibrium dynamics) may lead economic slowdown 
in a fishery industry.

A similar analysis of the system was done when the 
equilibria of the isolated systems were unstable. It was 
found, that under some parametric conditions 
(A > 2M), the delay had no effect in changing its 
instability. However, when A< 2M, the delay could 
induce instability switching. Numerical experiments 
were performed for the case when A< 2M. A suitable 
weight parameter α could not alter the instability for any 
time delay. For some values of α, stability switching 
could take place for the varying delay.

Clearly, spatial models due to dispersal delay 
reveal more complex dynamics in comparison to 
non-spatial predator-prey models. Describing the 
delay-induced dynamics can also emerge new and 
more complex mathematical theories and techniques. 
Zhang et al. [35], have proved that a stable system 
could be destabilized due to delayed prey dispersal. 
We considered several spatial systems (not detailed 
here) with different migration terms to produce the 
same outcome obtained by Zhang et al. [35]. 
However, we are successful in obtaining the same 
outcome in our discussed model (1). Hence, identi-
fying many more systems to validate such a result 
could be interesting. On the other hand, delayed 
predator dispersal always maintains local stability of 
the steady state [37]. Therefore, attention could be 
paid to develop models with new kind of predator 
dispersal, in which delayed predator dispersal could 
destabilize the local stability of the equilibrium. Till 
date, the analysis of such kind of models have been 
investigated when all the patches were identical. 
Analysis of the heterogeneous patchy models might 
be very complex. For instance, harvesting in patchy 
model could induce heterogeneity. As proposed by 
Sun and Mai [36], exploring dynamics in harvested 
models under delayed dispersal certainly be challen-
ging from mathematical viewpoint.
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