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A B S T R A C T

We develop a four dimensional predator-prey system in continuous time with stage-structure for both the
communities. The reproduction rate of the prey and the transition rate for the predator, in our model, are
assumed to be density-dependent. The stability results for the coexisting equilibrium are obtained by making use
of Routh–Hurwitz criteria. Because of the density-dependent effects, numerical simulations are applied in
complex situations. We observe that increasing values of the coefficients linked with density-dependent term
promote the stability of the coexisting steady state. Our main focus is to understand the variation of stocks when
mortality rates on different stage classes are increased. We verified that stable stock on mature predator in-
creases with its increasing mortality rate in three different modeling frameworks. However, no such positive
effect on the biomass of the immature predator occurs when immature predators are removed, culled or har-
vested. Therefore, we could conclude that the appearance of hydra effect on many unstructured predator-prey
models is due to the mortality of the mature predator only. No hydra effect is also detected when mature prey is
removed in several situations we discussed. Overall, the obtained results are new and could be interesting
contribution in theoretical ecology.

1. Introduction

Mathematical models have become popular and useful to describe
population dynamics in the current century. After the appearance of
Lotka-Volterra model, there have been significant developments for
multi-species modeling and analysis without stage and spatial struc-
tures. However, relatively less attention is paid to explore stage-struc-
ture predator-prey models. In this paper, we propose a predator-prey
system with stage-structure for both the species, and investigate the
dynamic modes under density-dependent effects and mortality rates.

Several articles were devoted to study the dynamics of structured
populations by modeling the two stages either for prey or predator
community. Some of the contribution also incorporated time delay
growth factor in the structured predator-prey system. Wang and
Chen (1997) developed a time delay predator-prey model with two
stages (mature and immature classes) for predators and derived the
condition for permanence of the system, existence of closed orbit and
global stability of the unique equilibrium. The same research group

(Zhang et al. (2000)) set up another model with two stages for prey
community and established the results on global stability and optimal
harvesting policy implemented on mature prey. A delayed model with
stage-structure for both prey and predator was designed by
Ma et al. (2008) and obtained the sufficient condition for the perma-
nence of the specialist predators. Very recently Neverova et al. (2019)
proposed a model with stage-structure for the prey and predator in
discrete time to study the influence of inter-specific interaction. Stage
structure for prey species in a predator-prey system was investigated by
Liu et al. (2009) to prove the existence of singularity-induced bifurca-
tion. Stage-structure for preys was built, combined with Beddington-
DeAngelis and Holling type-IV functional responses, by
Huang et al. (2010) to obtain the necessary and sufficient conditions for
the permanence of the system. Liu and Wang (2011) proposed a model
with stage-structure for prey where predators consumed the mature
prey only. They discussed about the global stability of the coexisting
steady state. Detailed Hopf-bifurcation analysis has been discussed in a
recent paper by considering stage-structure for preys (Wei and
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Fu, 2016).
The above scholars mostly developed models with density-in-

dependent per capita growth rate of immature populations. More gen-
eral models with density-dependent (density of mature prey class) per
capita growth rate of immature prey were explored by Abrams and
Quince (2005). They established the stability condition and examined
the impact of predator mortality. Most of the contributions (except Ma
et al., 2008; Neverova et al., 2019), including Abrams and
Quince (2005), proposed predator-prey community dynamics with
stages either for prey or predator. Ma et al. (2008) obtained the per-
sistence of populations, but no discussion was provided for the ex-
istence of equilibrium, limit cycle and their stability. On the other hand,
predators with single stage is proposed (three dimensional model) in
Abrams and Quince (2005), which allowed to derive many analytical
results for establishing local stability. In this article, we develop dy-
namics of predator-prey system with stage-structure for both the po-
pulations. The density-dependent term in growth function for popula-
tions are incorporated into the model. The analysis of the model can be
divided into two parts: (i) The role of density-dependent effects on es-
tablishing stable steady state, and (ii) The impact of linear mortality of
mature prey, mature and immature predator on stock estimation.

We first analyze the model dynamics under different inter-specific
competition coefficients due to density-dependent effect in the growth
term. It is observed that intra-specific competition is the effect of lim-
ited food and habitat availability among a population community.
However, it produces many desirable ecological results. Kar and
Ghosh (2013) have proved that intra-specific competition among pre-
dator may have a potential role to produce maximum yield from prey
species. Otherwise, predator species, without intra-specific competi-
tion, surely goes to extinction. On the other hand, a global stability of
the interior point is established due to the intra-specific competition
among predator in a delayed Beddington-DeAngelis predator-prey
model by Li and Takeuchi (2011). We focus to investigate the potential
role of different types of intra-specific competition coefficients in sta-
bilization the coexisting equilibrium.

Our conventional knowledge suggests that mortality of a species
decreases its own biomass. However, theoretical (Abrams, 2015;
Matsuda and Abrams, 2004; Sieber and Hilker, 2012) and empirical
(Schröder et al., 2014) results, in the current decade, prove that in-
creasing mortality can induce a positive impact on the stock of the same
species. This is a paradoxical result and coined as hydra effect by
Abrams and Matsuda (Abrams and Matsuda, 2005; Matsuda and
Abrams, 2004). Cortez and Abrams (2016) investigated different pre-
dator-prey and food chain systems where hydra effect occur. Recently,
Costa and dos Anjos (2018) established the existence of multiple hydra
effect in a predator-prey system involving Allee effect and mutual in-
terference among predators. Very recent development by
Pal et al. (2019) ensures the existence of hydra effect in Rosenzweig-
MacArthur type food chain with trophic level more than four. A com-
plete scenario for stock variations has been displayed in a table for
harvesting individual trophic level. There are also significant con-
tributions on hydra effect for discrete-time single (Liz and Ruiz-
Herrera, 2012) and multi-species (Neverova et al., 2018; Weide et al.,
2019) community.

Predator-prey models with two stages for prey and without density-
dependent term for predator species were studied by Abrams and
Quince (2005). They showed that predator biomass increases at stable
state when its mortality rate is increased. Schröder et al. (2014) de-
monstrated that hydra effect is a common feature in a stage-structured
community instead of unstructured ones. Recent research based on a
predator-prey system with generalist predator and stage-structure for
both the populations has been conducted by Costa et al. (2017). They
proved that adding more predator causes an enhancement of stable
biomass for the adult prey. Clearly, the research outcomes on stage-

structured models are relatively less in the context of hydra effect.
Therefore, we attempt to explore stage-structure systems for examining
the positive effect on stable stock due to mortality.

The paper is organized as follows: In Section 2 we propose a con-
tinuous-time predator-prey model with stage-structure for both the
community. Different assumptions in developing the model are de-
scribed therein. The local stability of the coexisting equilibrium, by
analytical and numerical methods, are presented in Section 3. Here, we
mostly focus to understand the effects of density-dependent terms on
stability behavior of the coexisting equilibrium. The Section 4 is de-
voted to estimate the stable stock of the population when either mature
prey, mature and immature predator stage are removed (harvested) by
means of increasing linear mortality. The discussion along with con-
clusion and future perspective are provided in the last section.

2. Model

In this section we propose a stage-structure predator-prey model in
continuous time. To develop the model we assume the followings:

(A) We consider that both the prey and predator have two stages: im-
mature (younger) and mature (adult) classes. There are several
studies, as reported in the Introduction section, where either prey
or predator has two stage classes. In such a situation, we can think
that one community evolves rapidly in comparison to the other
one. For example, predator species (predatory fish) may evolve
more rapidly than the prey populations (prey fish with smaller
size). Because, prey fish may survive for short time and their life
cycles might not be separated. Hence, considering stage-structure
for predator species in models are more justified. We assume that
both prey and predator evolve in the similar time scale. Hence
stage-structure for both populations are incorporated into our
model.

(B) It is well accepted that mature age classes are capable to reproduce
offspring. Thus, reproduction rate must depend upon the existing
mature class in the respective community. We assume that re-
productive rate for prey (resp. predator) is density-dependent (resp.
independent). On the other hand, the transfer rate for immature
prey (resp. predator) to the mature stage to be density-independent
(resp. dependent). The transfer rate is the only density-dependent
term for predator growth in our model. Density-dependent-transi-
tion rate is plausible in many fish population dynamics as discussed
by Abrams and Quince (2005). They assumed the density-depen-
dent transition for prey populations.

(C) Only the mature predator class take part in predation and they
prefer to consume only the mature prey population in our model.
We modeled the predation process by the Holling-type II functional
(and numerical) response (Holling, 1965). There are several studies
where unstructured predator consume either immature prey
(Zhang et al., 2000), mature prey (Wei and Fu, 2016) or both the
stage classes (Naji and Majeed, 2016). If the size of the mature prey
stages are relatively larger than immature predators, immature
predator may not be able to handle mature prey. In this case, they
can consume the immature prey only. On the other hand, immature
prey are more easily accessible to the mature predator class, but
they may not prefer the immature prey because of less nutrient
value. Therefore, mature prey are in favor to the mature predator
for predation. Ma et al. (2008) have assumed that mature predators
only consumed the mature prey stage.

(D) We consider density-dependent mortality for mature prey popula-
tions.

On the basis of our specific axioms, the model takes the form:
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where x1 and x2 (resp. y1 and y2) are the biomass of the juvenile and
adult prey (resp. predator) at any time t. The nonlinear function
r x c x(1 )1 1 1 2 represents the density-dependent reproductive rate for
immature prey where r1 is the maximum per capita growth rate of the
adult prey and c1 is the rate at which per capita birth rate is decreased
with increased density of the adult prey. b1 is the transition rate of
immature prey to the mature class. On the other hand, b y c y(1 )2 1 2 1 is
referred as the density-dependent transfer rate of immature predator to
adult predator where b2 is the maximum per capita growth rate of the
adult predator and c2 is the rate at which per capita birth rate is de-
creased for adult class with its increasing density. μi’s (and mi’s) are the
specific death rate of the prey (and predator) stages =i i( 1, 2). The
strength of the intra-specific competition among adult prey is indicated
by γ and hence the term x2

2 is referred to the crowding effect among
mature predator class. Holling type II functional response +x h x/( )2 2 is
considered for predation with α as the attack rate, β as the conversion
coefficient and h as the half saturation constant.

3. Model analysis: Role of density-dependent effects

We analyze the model by determining the equilibria and establish
some parameter conditions for which stability behavior of the equilibria
are ensured. Note that the growth functions for immature stages are
nonlinear of the state variables. Therefore, it seems difficult to in-
vestigate the model by finding the equilibria and stability conditions
explicitly in term of parameters. We start our analysis for a relatively
simple model configuration with = =c c 0.1 2 On later stage, simulations
work would be performed to address more complex situations by con-
sidering c1 ≠ 0 or c2 ≠ 0.

3.1. Dynamics of the simple model

When we set = =c c 0,1 2 the general model is converted into
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The above parameter choice makes the growth functions for immature
stages more simpler, and hence it allows us to produce some of the
results analytically.

3.1.1. Equilibria
The steady states of the model (2) are:

(i) The trivial equilibrium S0(0, 0, 0, 0). This equilibrium always exists
without any parameter condition.

(ii) The predator extinction equilibrium S x x¯ ( ¯ , ¯ , 0, 0)1 2 with
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The above equilibrium exists when > +r b µ b µ( ).1 1 2 1 1
(iii) The unique coexisting equilibrium S x x y y* ( *, *, *, *),1 2 1 2 where
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We determine x *2 from the adult predators’ nulcline. Thus, x *2 is the
positive solution of
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Since x *2 is uniquely computed, the unique y*2 is evaluated as the
positive solution of
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For the positivity of y*,2 an essential condition > +r b µ b µ( )1 1 2 1 1
needs to be imposed. In fact, this restriction implies the existence
of predator-free equilibrium. Therefore,
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Clearly, x *2 is solely a function of the parameters describing the dy-
namics of predators, whereas x *1 depends on parameters involved into prey
and predator dynamics. It is worthwhile to recall that the equilibrium prey
biomass in well known Rosenzweig-MacArthur (RM) predator-prey model
without crowding effect among predators depends upon the parameters of
the predators’ growth function. However, in this stage-structure model,
equilibrium prey biomass for both the stages depend on the parameters
involved into the predator dynamics. We now derive the condition for
asymptotic stability for different equilibria. The equilibrium values of the
prey stage classes do not depend upon γ. However, we explore the role of
this parameter in understanding stability nature for coexisting steady state.

3.1.2. Stability analysis of the steady states
The general form of the Jacobian matrix determined at arbitrary

point is presented as
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We find the linear stability at any equilibrium by identifying the sign of
real part of all the eigenvalues obtained from the Jacobian matrix.

Stability of the trivial equilibrium
The Jacobian matrix evaluated at trivial (extinction) equilibrium is
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The stability of the extinction equilibrium can easily be determined
by computing the trace and determinant values of the two block ma-
trices. Both the block matrices have eigenvalues with negative real part if

i. < +r b µ b µ( )1 1 2 1 1 and
ii. < +r b m b m( ).2 2 2 2 1

Under the above two conditions, the extinction equilibrium is a
stable node. The first condition implies that the predator extinction
equilibrium x x( ¯ , ¯ , 0, 0)1 2 cannot exist, and hence the coexisting equi-
librium does exist as well (we refer to the expression of y*2 ). On the
other hand, the second condition derives all the stages to extinction
(i.e., non-existence of interior equilibrium). Thus the non-existence of
non-trivial equilibrium is a consequence of the asymptotic stability of
the trivial steady state.

Stability of the predator-extinction equilibrium
In this case, stability of S̄ completely depends on the following block
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The trace of the above matrix is negative. The determinant is given
as

+ + +µ b µ r b b µ x( ) 2( ) ¯ .2 1 1 1 1 1 1 2

However, + <µ b µ r b( )2 1 1 1 1 ensures the existence of the predator-free
equilibrium, and hence the determinant may not be always positive.
Thus for the asymptotic stability of the equilibrium
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must be satisfied.
Stability of the coexisting equilibrium
We assume that =J a( ),ij then a simplification of a44 reduces the
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The sign of each non-zero entry is obvious. The characteristic equation
corresponding to the Jacobian matrix is
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According to Routh–Hurwitz criteria, the coexisting equilibrium is lo-
cally asymptotically stable iff

> > +P P P P P P P P P, , 0 and .1 3 4 1 2 3 3
2
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Clearly P1 > 0 always holds true. However, it seems difficult to de-
termine the sign of the other Routh–Hurwitz conditions in full para-
meter space.

We have seen that one of the conditions for coexisting steady state
depends on γ. We determine the values of γ numerically for the stability
of the equilibrium. For simulation, we select the parameters as

= = = = = = =

= = =

r r b b µ µ m

m

1, 0.5, 0.5, 0.2, 0.1, 0.1, 0.4,
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2
and =h 1. From the expression of y*,2 we computed the threshold value
for the existence of equilibrium as
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+

=
x
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µ1
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2
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Therefore, all the stages persist when γ ∈ (0, 0.5866). Within this range
we computed the values of P3, P4 and P P P P P P( )1 2 3 3

2
1
2

4 . It is observed
that P3 and P4 are always positive, whereas P P P P P P( )1 2 3 3

2
1
2

4 changes
its sign. P P P P P P( )1 2 3 3

2
1
2

4 remains negative within γ ∈ (0, 0.2101) and
becomes positive otherwise (see Fig 1). Thus, all the stages coexist at stable
steady state for all γ ∈ (0.2101, 0.5166). In particular, when = 0.2, the
coexisting equilibrium (2.0833, 1.2500, 3.0208, 3.625) is unstable and
populations experience cyclic dynamics, whereas the equilibrium
(2.0833, 1.2500, 2.8646, 3.4375) is asymptotically stable when = 0.22.
It is to be noted that the equilibrium value for mature and immature prey
populations under the variation of γ are invariant. The main outcome from
simulation reveals that increasing strength of intra-specific coefficient has
a stabilizing effect on the coexisting steady state.

3.2. Analysis of the complex model

We investigate the impacts of varying competition coefficients in-
volved in reproduction process for prey species and transition term for
predator transition. We directly focus on the dynamic mode of the co-
existing equilibrium. Deriving the expression for positive equilibrium
and corresponding stability analysis are difficult. We adapted numerical
scheme to compute the coexisting equilibrium and its local stability. As
this model is complicated due the existence of density-dependent re-
productive term for prey species and density-dependent transition term
for predator growth, we explore the role of c1 and c2 successively. We
observed that competition coefficient γ for mature predator has a sta-
bilizing effect when it is increased. We would like to know if such
stabilizing effect is likely to happen when c1 (and c2) is increased.

The methodology for computing equilibrium and stability criteria
are the same as already been explained for simple model. We first de-
termine the equilibrium, and then evaluate the Jacobian matrix corre-
sponding to the complex model. Finally, we apply Routh–Hurwitz cri-
teria to establish the stability of the equilibrium.

As a reference, we fix = 0.15 along with the other parameters
= = = = = = = =r r b b µ µ m m1, 0.5, 0.5, 0.2, 0.1, 0.1, 0.4,1 2 1 2 1 2 1 2

= =0.2, 0.3, 0.2 and =h 1 which are used for simple model. From
Fig. 1, it is clear that the corresponding equilibrium is unstable. Now we
explore the stability nature of the equilibrium when c1 is increased. All
the stage classes coexist at equilibrium when c1 ∈ (0, 0.5239). It is
calculated that P4 remains positive within this interval, whereas P3 and
P P P P P P( )1 2 3 3

2
1
2

4 becomes positive when c1 > 0.055 and 0.065,
respectively. Thus, P P P P P P( )1 2 3 3

2
1
2

4 plays the key role in deterring
stability of the equilibrium. Fig. 2 a shows that increasing values of c1
destroys the instability at =c 0.0651 as all the stability conditions due to
Routh–Hurwitz criteria are satisfied. The populations are at non-equi-
librium dynamics for smaller values of c1 ∈ (0, 0.065), whereas the
equilibrium is stable for any c1 ∈ (0.065, 0.5439). Therefore, increasing
competition strength among immature prey has a stabilizing effect on
the system dynamics.

On the other hand, we select =c 01 and vary c2 under the same
parameter configuration. The coexisting equilibrium remain unstable
for smaller values of c2, but gains asymptotic stability when c2 > 0.01.
In fact, increasing values of c2 reduce the stock of predator biomass
asymptotically. The equilibrium maintains stability for longer values of
c2 (see Fig. 2 b). Unlike the case of c1, P P P P P P( )1 2 3 3

2
1
2

4 is positive
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for c2 > 0.01 and does not show much variation for larger c2. From
stabilization view point, we arrive at the same conclusion for changing
c2, as we obtain by varying c1. It is now acceptable fact that increasing
values of all γ, c1 and c2 together promote stability of the coexisting
equilibrium as a whole.

4. Impact of mortality for mature populations

In this section, we examine if increasing mortality of the mature
populations has any positive impact on biomass. Mortality rate for the
predator in unstructured Rosenzweig–MacArthur model produces its
higher mean density (time averaged biomass) when the populations
follow cyclic dynamics. However, stock of the predator is not enhanced
at stable steady state for increasing mortality rate of the predator. On
the other hand, Abrams and Quince (2005) considered structured (resp.
unstructured) dynamics for prey (resp. predator) species and estab-
lished the hydra effect only on predator at stable steady state. We focus
our investigation on the situation where stable steady stock of the target
stages (mature prey, mature and immature predator) is increased due to
higher mortality rate.

Economically, it is justified to harvest mature populations due to
their higher market price and nutrient value. However, immature stage
for predator could also be bigger in size compared to the mature prey
stage. In this sense, harvesting of immature predator stage, sometimes,
may be preferable as well. It is established that harvesting predator
causes hydra effect when predator is unstructured (Abrams and
Quince, 2005). Therefore, it would be worthwhile to examine whether
harvesting mature or immature stage of predators induces hydra effect.

4.1. Simple model

First we consider the simple model where = =c c 0.1 2 From previous
section, we know the equilibrium values of the mature populations as:
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We now determine the stock dynamics due to mortality of in-
dividual mature stages successively.

4.1.1. Removing mature predator
We estimate the variation of stocks when the mature predators’

mortality is increased. The rate of change in biomass for mature prey
with respect to predator mortality can be determined from the fol-
lowing relationship

= +
+

>dx
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( )

0.2

2
2

2 2

2 1
2

Hence, harvesting mature predator leads higher density at equilibrium
for both the mature and immature prey species regardless the stability
mode of the system. The rate of change in biomass for mature predator
is

=
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* 1 2 * .2

2

1 1
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2 2

Thus, maximum of y*2 is achieved when mature prey biomass be-
comes
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2

.2
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2

Clearly, mature predator biomass at equilibrium will increase (resp.
decrease) when prey biomass is inferior (resp. superior) than x̂2. We are
mostly interested to verify if mortality leads higher density of the ma-
ture predator at stable equilibrium. Thus, we restrict our mortality rate
in such a way that it cannot produce higher biomass than x̂2. Therefore,
the critical mortality rate m̂2 can be found from =x x* ^ ,2 2 which yields a
linear equation of m2 as

=
+

Ah
A

r b
b µ

µ h1
2

.1 1

1 1
2

Fig. 1. The variation of P P P P P P( )1 2 3 3
2

1
2

4 with respect to γ is shown. Other stability conditions are satisfied beyond the threshold value of = 0.5866. It concludes
that higher value of competition coefficient among mature prey stabilizes the non-equilibrium dynamics to a steady state.
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If the coexisting equilibrium is stable for <m m̂ ,2 2 biomass of the ma-
ture predator increases at stable state. Hence, a hydra effect could appear on
the mature predator stage. However, it seems difficult to prove the stability
nature via Routh–Hurwitz criteria analytically. We thus use simulation
approach to verify the existence of such a complex phenomenon.
Consider the parameter set as = = = =r r b b1, 5/10, 5/10, 2/10,1 2 1 2

= = = = = =µ µ m1/10, 1/10, 4/10, 2/10, 3/10, 2/101 2 1 and
=h 1. Calculation shows that =m̂ 211/1050.2 At this, critical equilibrium

biomass are computed as

20
9

, 4
3

, 245
81

, 98
27

.

We determine the characteristic equation corresponding to this
steady state, which takes the form:

+ + + + =11
5

34831
31500

36
4375

54
21875

0.4
3 2

Clearly, all Pi’s are positive along with

=P P P P P P 30631
3828125

.1 2 3 3
2

1
2

4

Therefore, the equilibrium is asymptotically stable for this critical
mortality rate. We would like to recall that Rosenzweig–MacArthur
predator-prey model experience Hopf-bifurcation when predator bio-
mass achieves its maximum value, whereas no bifurcation appears for
the maximum biomass in our stage-structure model.

We now want to know the stability nature of the equilibrium for a
smaller mortality rate For this mortality rate, the equilibrium steady
state is

25
12

, 5
4

, 145
48

, 29
8

and the corresponding characteristic equation becomes

+ + + + =589
270

1459
1350 13500

29
11250

0.4
3 2

The important Routh–Hurwitz condition

= <P P P P P P 5950493
492075000

0.1 2 3 3
2

1
2

4

Thus, the equilibrium is unstable. One can easily verify that the system
is stable (resp. unstable) when m m̂2 (resp. m2 ≤ 210/1050).
Therefore, the stability threshold m̄2 must lie within the interval

210
1050

, 211
1050

.

In fact, numerical experiment reveals that the equilibrium is unstable
even if the mortality rate is in the middle of above interval.

We estimated the interval of m2 as

176
1050

, 224
1050

.

where all the stages persist. It suggests that the interval m m[ ¯ , ^ ],2 2 where
stock of mature predator increases at stable state, is very narrow in
comparison to the whole interval of mortality (176/1050, 224/1050)
(where both the populations coexist). In conclusion, a hydra effect oc-
curs in an insignificant interval when mature predator is removed.
Although we are unable to explain the above fact analytically, but few
other hypothetical sets of parameters reveal the same result. In addi-
tion, it is clear that non-equilibrium dynamic mode can settle down to a
stable steady state once mortality rate crosses the stability threshold.
Thus, increasing mortality rate has a stabilizing effect.

In the above numerical analysis, we used fractional form of the
parameter values instead of decennial one. This representation does not
loose any digits during the process of a series of necessary calculations.
Decimal representation might not produce the exact characteristic
polynomial and hence the quantities to determine stability due to
Routh–Hurwitz conditions. As a result, we cannot confidently identify
the narrow interval in decimal representation. However, we use dec-
imal representation for the later situations where it does affect the
qualitative analysis.

4.1.2. Removing immature predator
In this subsection, we examine whether harvesting of immature

predator causes hydra effect over a significant range of effort. When
mortality of immature predator is increased, the rate of change in
biomass for the mature prey stage becomes

=
+

>dx
dm

hb r
A b m

*
( ) ( )

0.2

1

2 2
2

2 1
2

Hence, both the mature and immature prey populations at equilibrium
increase with the increasing mortality rate. On the other hand, the rate
of change for immature predator biomass can be calculated from:

=
+

y r
b m

y* *1
2

2 1
2

and

= +
+

y h x r b
b µ

µ x* * * .2
2 1 1

1 1
2 2

Fig. 2. (a) Change of stability due to varying c1 with =c 02 and (b) c2 with =c 01 are shown by estimating P P P P P P( )1 2 3 3
2

1
2

4 . Other conditions hold true within the
respective range of c1 and c2 for which P P P P P P( )1 2 3 3

2
1
2

4 is positive.
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Therefore,

=
+

+
+

dy
dm

r
b m

y r
b m

dy
dm

*
( )

*
( )

*
.1

1

2

2 1
2 2

2

2 1

2

1

Earlier we have seen that y*2 is a nonlinear function of x *2 and x *2 is
also a nonlinear function of m1. Hence, finding critical value of m1, in
the form of fractional representation is difficult at which immature
predator attends a maximum.

We fix the same parameter values along with =m 1/5.2 It is calcu-
lated that populations persist when m1 ∈ (0.301, 0.455). However,
numerical computations claim that all the stability conditions are sa-
tisfied at coexisting equilibrium when m1 ∈ [0.403, 0.455). Hence, in-
creasing mortality promotes stability of the system.

We explore the variation of biomass for all the stages in Fig. 3 when
m1 ∈ (0.301, 0.455). The immature predator biomass decreases at
stable state with increasing mortality (see Fig. 3 b), whereas it seems
from the figure that the biomass of the same stage increases when the
equilibrium is unstable. We carefully (without loss of digits) determined
the coexisting equilibrium at =m 401/10001 and =m 402/10001 as:

5050
2379

, 1010
793

, 5693000
1886547

, 6842986
1886547

and

850
393

, 170
131

, 465500
154449

, 560462
154449

,

respectively.
One can easily compute that the biomass of the immature predator

is decreasing with increasing mortality rate between the above two
values of m1. We also calculated

= <P P P P P P 1011665957817548420209
1149515008124831250000000

01 2 3 3
2

1
2

4

for =m 402/1000.1
It suggest that the equilibrium is unstable for all m1 ≤ 0.402. Hence,

the biomass (unstable) of the immature predator decreases with its
increasing mortality, at least, within the narrow range (0.401, 0.402).
Therefore, no hydra effect can be appeared at stable state when im-
mature predator is removed for m1 > 0.401.

4.1.3. Removing mature prey
One can recall that the biomass x *2 of the mature prey is in-

dependent of its mortality μ2. Therefore, no hydra effect could be de-
tected under its own mortality.

4.2. Complex model with =c 02

Here we attempt to describe the results of mortality when density-
dependent effects are in action on both the stages of the prey popula-
tions.

4.2.1. Removing mature predator
We have seen that a hydra effect appears in a very small range when

mature predator’s mortality rate is increased in the simple model. We
use the same parameter set selected for describing the phenomenon of
mature predator mortality in the simple model along with =c 0.31 .
Then we vary the mortality rate m2. All the stages coexist when
m2 ∈ (0.1669, 0.2038). Fig. 4 depicts the variation of biomass for
all the stages with increasing m2. We found that all the stability criteria
are met when m2 ∈ (0.17994, 0.2038). Therefore, populations
persist at non-equilibrium (resp. stable steady) mode when
m2 ∈ (0.1669, 0.177994) (resp. m2 ∈ (0.17994, 0.2038). It suggests that
increasing mortality can stabilize the system. We again observed that
biomass of the mature predator increases in a very small range of the
mortality rate as can be seen in Fig. 4 d. Therefore, we obtain the si-
milar phenomenon as observed in the simple model. Of course, the

stability threshold is not so accurate as described for simple model, but
it is plausible that hydra effect must occur.

4.2.2. Removing immature predator
We have established that mortality of the mature predator can

result hydra effect, but not by the mortality of the immature predator in the
case of simple model. We now check whether similar results can be
obtain when immature predator is removed in the present modeling fra-
mework. We select the parameters as = = =r r b1, 5/10, 5/10,1 2 1

= = = = = = =b c c µ µ2/10, 3/10, 0, 1/10, 1/10, 2/10,2 1 2 1 2
3/10, = 2/10 and =h 1. We now choose =m 0.18052 as it is on the range
mortality where hydra effect was appeared in Fig. 4 along with =m 0.41 .
The main attention is to examine if mortality of the immature predator can
result a hydra effect. Computations reveal that all the populations can exist
at equilibrium whenm1 ∈ (0.355, 0.497). However, the stable coexistence is
possible within the mortality interval (0.401, 0.497). It can be seen that
biomass for both the prey stages are increased (Fig. 5 a and c). On the other
hand, biomass of the immature predator decreases (regardless the stability
behavior of the stock) with increasing mortality (Fig. 5 b). Thus, hydra ef-
fect does not appear on the immature predator stage. Therefore, we observe
that likewise the simple model, no hydra effect appears on the immature
predator. In addition, the hydra effect on predator populations happens due
to the harvesting/ culling of the mature stage class.

4.2.3. Removing mature prey
Likewise the case of simple model the equilibrium of the mature

prey stock can be determined by setting = =dy dt dy dt/ 0 /1 2 . However,
these two expressions are free from the mortality rate μ2 of the mature
prey. Hence, no hydra effect can be experienced on mature prey stage
even through the immature prey possesses densit- dependent term.

4.3. Complex model with =c 01

Finally, we consider that transition rate of immature stage to mature
stage among predator possesses density-dependent function. Then we
analyze the removal effects of different stage classes, and compare the
results obtained so far from the above analysis.

4.3.1. Removing mature predator
First our investigations focus on removing mature predator by

making use of the parameter set = = = =r r b b1, 0.5, 0.5,1 2 1 2
= = = = = = =c c µ µ m m0.2, 0, 0.1, 0.1, 0.1, 0.1, 0.12,1 2 1 2 1 2
= =0.3, 0.2, 0.1 and =h 1. Then the coexisting equilibrium

(10.7962, 6, 4777, 9.2126, 2.1327) is systematically stable. When
mortality rate m2 is increased inferior to =m 0.385,2 all the stages
persist. We would like to measure the equilibrium stock of all the stages
when mortality is increased. It is observed from Fig. 6 a that biomass of
the mature predator, at stable state, is increasing with higher mortality
rate up to =m 0.2192 . Further, it is decreased for m2 ∈ (0.219, 0.385).
This observation leads to the existence of hydra effect on the mature
stage of the predator. In the context of fishery science, one might at-
tempt to catch maximum fishes of mature class. When mature predator
is targeted for fishing, the obtained yield can be determined as

=Y m y* *2 2 at the equilibrium. Apparently, one may think that max-
imum yield (MSY) can be achieved within a range of mortality rate m2

where hydra effect appears. Because the stock is higher in the said
range and one could think of getting higher yield. The Fig. 6 b estab-
lishes that MSY exists in a range of mortality where no hydra effect is
appeared.

We have also estimated the variation of all the stages for
m2 ∈ (0.12, 0.219) as can be seen in Fig. 7. It is interesting to note that
stock of the immature predator decreases, while mature predators’
stock increases with increasing mortality. However, in the case with

=c 0,2 biomass for both stages for predator species increases simulta-
neously (see Fig. 4). In the same range, biomass for both the prey
classes decreases. Therefore, understanding the variation of biomass in
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such a structured community is very complex. However, we have ver-
ified that stocks for both prey (resp. predator) stages increase (resp.
decrease) where hydra effect does not appear (i.e., when
m2 ∈ (0.219, 0.385).

4.3.2. Removing immature predator
We now estimate the stock of the immature predator when m1 is

varied. We fix the same parameter set used for culling the mature
predator along with =m 0.22 . Populations persist at steady state when
m1 ∈ (0.001, 0.479), but stable coexistence is possible for
m1 ∈ (0.03, 0.479). We have shown the variation of stock for all the
stages in Fig. 8. Clearly, stock dynamics with respect to mortality of the
immature predator follows a very complex pattern. When
m1 ∈ (0.03, 0.245) (resp. m1 ∈ (0.245, 0.479) both the stages for prey

Fig. 3. The variations of prey and predator stages are shown. The stock corresponding to the stable equilibrium exists when m1 ∈ (0.403, 0.455). Hydra
effect cannot be appeared at stable biomass on immature predator. We use the parameters: = = = = =r r b b µ1, 5/10, 5/10, 2/10, 1/10,1 2 1 2 1

= = = = =µ m1/10, 1/5, 2/10, 3/10, 2/102 2 and =h 1.

Fig. 4. The stable stocks for all stage classes are shown when m2 is varied. Biomass of both the predator stages are increased in a small range of m2 in comparison to
the species coexistence range. (d) Shows the existence of hydra effect. We choose = = = = =r r b b c1, 5/10, 5/10, 2/10, 3/10,1 2 1 2 1

= = = = = = =c µ µ m0, 1/10, 1/10, 4/10, 2/10, 3/10, 2/102 1 2 1 and =h 1 for simulation.
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populations decrease (resp. increase) with increasing mortality rate as
displayed in Fig. 8 a and c. However, the biomass of the immature
predator linearly decreases with increasing mortality (Fig. 8 b).
Therefore, no hydra effect appears on immature predator. Although the
stock of the mature predator increases within m1 ∈ (0.03, 0.245)
(Fig. 8 d).

4.3.3. Removing mature prey
In the earlier discussion, the equilibrium biomass of the prey stages

were independent of mortality rate μ2. In the current modeling frame-
work, biomass of the prey population must be changed with mortality.
A typical parameter set is chosen as = = = =r r b b1, 0.5, 0.5,1 2 1 2

= = = = = = =c c µ m m0.2, 0, 0.1, 0.1, 0.1, 0.2, 0.3,1 2 1 1 2
=0.2, 0.1 and =h 1. At least one feasible equilibrium exists when

μ2 ∈ (0, 0.414). In particular, there exist two positive equilibria when
μ2 > 0.15. We observe that one of the equilibrium is stable for
μ2 < 0.36; otherwise, both the equilibria are unstable for increasing

mortality. Then the prey-free equilibrium (only predators survive) be-
comes stable for μ2 ∈ (0.35, 0.414). The stable stock of all the stages are
shown in Fig. 9 when μ2 ∈ (0, 0.36). The biomass of both the prey stages
decrease with increasing mortality on mature prey (Fig. 9 a and c).

5. Conclusion

We have built a predator-prey community model with stage-struc-
ture for both the species. Several axioms have been clarified to for-
mulate the four dimensional model. The general model has been clas-
sified into two categories: simple model and complex model. We have
studied the local stability of the equilibrium analytically for the simple
model, whereas the numerical simulation has been applied for complex
one. Routh–Hurwitz criteria have been used to determine the stability
nature of the steady states. The main purposes of the paper were to
examine (i) the effect of density-dependent term on stability and (ii)
positive impacts of increasing population mortality on the stock size.

Fig. 5. The stocks for all stages are shown when m1 is varied. The equilibrium is stable when m1 ∈ (0.401, 0.497). There is no positive effect on biomass for the
immature predator class.

Fig. 6. (a) The biomass of the mature predator is increased for increasing values of m2 up to certain limit and then it starts to decrease. Within the whole mortality
range P P P P P P( )1 2 3 3

2
1
2

4 is always positive. The other two stability conditions such as P2 > 0 and P3 > 0 are satisfied as well. Thus, hydra effect appears on mature
predator in 40% on the effective mortality range. (b) MSY is achieved for a mortality range when stock of the mature predator is decreasing.
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In the simple model we have observed that an unstable equilibrium,
which was unstable for smaller value of intra-specific competition
coefficient, could be stable for increasing value of the competition
coefficient. We have also shown that increasing values of c1 and c1
linked with density-dependent reproduction of prey populations and
density-dependent transition function, respectively, promote stability of
the coexisting equilibrium. Li and Takeuchi (2011) have established the
global stability of the equilibrium in a delayed predator-prey model
where predator had density-dependent mortality. Thus, our results on
local stability arising from density-dependent effect might be inter-
esting from ecological view point.

We have examined the influence of linear mortality for mature age
classes of both the prey and predator communities. This mortality could

be treated as the harvesting in fishery science or culling of pest popu-
lation from agriculture crops. First, we have studied the influence of
mortality of the mature predator. A tricky method combined with
analytical technique and numerical simulation have been applied ef-
fectively to understand the positive effect on mature predator’s stock
due to its own mortality. Our analysis revealed that stock was increased
at stable state within a very narrow interval of mortality rate.
Therefore, a hydra effect appears on the mature stage class of the
predator species.

Several articles (see Introduction Section) established that mortality
can lead hydra effect on predator population in unstructured models. We
were interested to know whether such an effect arises from mature or
immature predator stages. In this context, we first examined the effect on

Fig. 7. The stable stocks for all the stages are shown when m2 ∈ (0.12, 0.219). All the stages, except the mature predator, decrease with increasing m2.

Fig. 8. The stock dynamics of all the stages, at stable equilibrium, with respect to m1 is depicted. It reveals that hydra effect is not experienced on the immature
predator class. We use the parameters as = = = = = = = = = = = =r r b b c c µ µ m1, 0.5, 0.5, 0.2, 0, 0.1, 0.1, 0.1, 0.2, 0.3, 0.2, 0.11 2 1 2 1 2 1 2 2 and =h 1 for
simulation purpose.
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mortality on immature predator in the simple model. We could not de-
tected any hydra effect on the immature predator (see Fig. 3 and the
detailed analysis). The numerical techniques used without losing any digit
for this finding could be interesting and effective for many other com-
plicated situations where analytical methods cannot be applied. Here, we
conclude that hydra effect on predator species is due to the positive effect
of biomass on the mature predator only. We have also observed that in-
creasing harvesting rate has a stabilizing effect on coexisting steady state
in the simple stage-structured predator-prey community.

When prey populations had dentistry-dependent reproduction,
mortality on mature predator had the same outcome as found for simple
model. A hydra effect was identified over a small range of mortality rate
on mature predator (Fig. 4). However, density-dependent function does
not have any impact to induce hydra effect on the immature predator
(Fig. 5). Finally, we considered the case when transition rate for pre-
dator growth was density-dependent. We have established that hydra
effect had appeared on a significant range of mortality when mature
predator was removed (Fig. 7). Maximum harvested biomass (MSY in
the context of fishery) was achieved within an effort range where ma-
ture predator was not subjected to any hydra effect. A very complex
stock dynamics was noticed when immature predator was harvested.
For increasing mortality of the immature predator reduced the stocks of
the prey stages and further increase of the mortality rate enhanced the
stock (see Fig. 8). However, no hydra effect appears on the immature
predator stage. Thus hydra effect, at stable state, is a common phe-
nomenon on mature predator, which is unlike to happen on the im-
mature predator in our models. Abrams and Quince (2005) have ex-
amined a stage-structure model with two stage for prey populations.
The predator’s dynamics was not modeled by density-dependent effect.
They only reported the positive effect on biomass when mortality rate
of unstructured predator was increased. Therefore, we have derived
many new results in our structured model. In addition, we could not
detect any hydra effect when mature prey stage was removed.

Although stage-structure model developed by ordinary differential
equations reveal many interesting ecological results, structured models
with time delay i.e., delay differential equations is much more accurate.

Ma et al. (2008) considered time delay in the transition rate for stage-
structure model of both prey and predator. Investigating such complex
models could be a future perspective.
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