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a b s t r a c t 

Modeling population dynamics using delay differential equations and exploring the impacts of harvesting 

in predator-prey systems are among few of the thrust areas of research in theoretical and applied ecol- 

ogy. Many results are established to understand distinct dynamics under population harvesting. However, 

comparatively less attention is paid to explain the explicit harvesting effects when populations fluctu- 

ate due to time delay. In this contribution, two well known Lotka–Volterra (LV) type and Rosenzweig–

MacArthur (RM) predator-prey models incorporating time delay into the logistic growth term are consid- 

ered. The analysis and the obtained results are summarized as follows. (a) Firstly, the dynamics of both 

the models, by considering the time delay as the bifurcation parameter, is analyzed. Some of the parame- 

ter conditions for the delay induced stability switching are improved and corrected in comparison to the 

earlier works. The delay induced stability results are derived and found to be similar for both the mod- 

els. (b) We investigate whether harvesting of either prey or predator can locally stabilize (respectively, 

destabilize) the system when the unharvested system dynamics is at non-equilibrium (respectively, sta- 

ble steady state) mode due to time delay. It is observed that harvesting can induce stability and instability 

switching depending upon the dynamics mode of the unharvested system. (c) In the same framework, we 

examine if a stable steady state can be obtained when predator is harvested towards Maximum Sustain- 

able Yield (MSY) level. Unlike the case of non-delayed LV type and RM predator-prey models, it is found 

that harvesting the predator towards MSY in the delayed models does not guarantee a stable stock. The 

new results compared to the existing literature might contribute in enriching fishery management policy 

and theoretical ecology as a whole. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Understanding interaction between species and analyzing var-

ous dynamical behavior using conceptual models is one of the

ascinated areas of research in theoretical ecology. In particular,

any mathematical models of single and multi-species system are

sed for describing fishery regulation and sustainability in fish-

ry managements. Accordingly, many fishery management tools

iz. MSY policy [3,37,45] , Maximum Economic Yield (MEY) policy

50] , Pretty Good Yield (PGY) policy [16] , Ecosystem Based Fisheries

anagement [41] , Marine Protected Areas (MPAs) [12,23] had been

eveloped. The above contributions including [6,8,11,28,36] , etc.,

onsidered models where populations persist at a globally stable

teady state. 

However, populations can also coexist in the form of non-

quilibrium states due to environmental fluctuation, human activ-

ty or because of inherent species interaction. Hence, oscillations
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nd chaotic dynamics are common in ecological systems. Oscil-

ation may arise in Rosenzweig–MacArthur predator-prey system

hereas tri-trophic food chain exhibits chaotic dynamics [1,15,25] .

uch oscillations or the chaotic dynamics are modeled by tak-

ng account of Holling type II functional responses. Ghosh et al.

10] and Tromeur and Loeuille [51] have shown that harvesting ei-

her prey or predator can remove oscillations from Rosenzweig–

acArthur predator-prey model. In addition, Ghosh et al. [10]

stablished that system becomes stable when predator is exploited

t optimum level. Very recently, Ghosh et al. [13] studied a tri-

rophic food chain and concluded that harvesting top-predator may

ause instability in the system. 

Time delay is very important in modeling any physical, biolog-

cal or engineering problems. For example, τ (time delay) is the

stimated time for a larva to get matured into adult (butterfly).

ince they are cultivated within limited resources, the competi-

ion within species for limited resources at current time t will be

odeled not only by the adult population at time t but also by

he newly formed adult population at time (t − τ ) . As an addi-

ional example, we can assume that a population has two stages:

https://doi.org/10.1016/j.chaos.2019.03.002
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immature and mature, and the newborns get matured in τ units of

time. Under such a consideration, the current growth of the adult

population depends upon the number of newborns which were

present at time (t − τ ) . Thus, ecologists have developed mathe-

matical models of predator-prey system incorporating time delay.

Although, non-linear functional responses cause non-equilibrium

dynamics following oscillations and chaos, time delay can also lead

to instability in predator-prey systems. Some of the pioneer works

based on single-species model incorporating time delay are dis-

cussed by Hutchinson [18] , Nicholson [40] , Beddington and May

[2] and Freedman and Gopalsamy [7] in the context of theoreti-

cal ecology. These contributions discuss about the global stability

of the steady state, existence of Hopf-bifurcation and length of de-

lay for which stability is ensured. However, time delay plays an

important role in modeling dynamics of multi-species interactions

[4,30] , eco-epidemiology and epidemiology [52,55,56] . 

The delay induced dynamics in predator-prey systems and tri-

trophic food chains are studied by many researchers. Three types

of time delays are mainly incorporated in analyzing predator-prey

systems: (a) time delay is involved in prey specific growth func-

tion, (b) delay is included in predation response function and (c)

delay is incorporated in the interacting function of the predator

equation. Ho and Ou [17] considered Lotka–Volterra type (logis-

tic prey growth in absence of predator and Holling type I func-

tional response) predator-prey system with time delay in prey

growth. They have proved the existence of stability switching due

to time delay. Stage-structure predator-prey model can also expe-

rience oscillation due to maturation delay [14] . Li and Takeuchi

[31] have proved the global stability result of the coexisting

equilibrium in a delayed predator-prey system with Beddington–

DeAngelis functional response. A detailed algorithm for the di-

rection of Hopf-bifurcation is established through the study of a

delayed Holling–Tanner predator-prey system by Zhang [57] . Shu

et al. [47] have shown that three types of bistability are possible

in a delayed intraguild predation model: one is node-node bista-

bility; another one is node-cycle bistability and the final one is

cycle-cycle bistability. Shi and Yu [46] analyzed Hopf-bifurcation

in a two zooplanktons and one-phytoplankton model with two

delays. A two-prey and one predator system with distinct time

delays in the logistic prey growth for both the prey populations

was investigated by Kundu and Maitra [26] , and have determined

critical value of delay parameters for which the system can be

destabilized. 

A large number of rich literatures are also available to address

harvesting impacts in delayed population dynamics models. A

delayed Lotka–Volterra type predator-prey model under propor-

tional harvesting was investigated by Toaha et al. [49] . They have

observed the occurrence of stability switching and determined

range of effort f or which stability got changed. On the other

hand, Toaha and Hassan [48] proved that there exists a para-

metric condition under which delay does not cause instability

in Lotka–Volterra type system with constant rate of harvesting

for both the species. However, delay causes stability switching

as well under different parameter condition. Xia et al. [54] ap-

plied non-trivial mathematical theory to study the direction of

Hopf-bifurcation in a delayed predator-prey system under constant

rate harvesting. A ratio-dependent predator-prey system under

time delay in predation process and harvesting the predator was

analyzed by Misra and Dubey [39] . They have mentioned that

Hopf-bifurcation is observed due to time delay. Roy et al. [44] also

studied a harvested predator-prey model under time delay and

Beddington–Deangelis functional response. Very recently, Liu and

Jiang [34] have used effective mathematical and simulation tools

in a delayed predator-prey system under Michaelis–Menten type

harvesting of prey species and analyzed the delay induced stability

switching. A predator-prey type model was considered under
arvesting to derive Hopf-bifurcation phenomenon due to multiple

elays by Juneja et al. [19] . 

Of course, the above articles developed the models under time

elay and harvesting. However, we feel that the explicit impacts of

arvesting have not been examined properly by the above contri-

utions (including [32,33,53] ). These notable contributions mainly

nalyzed the dynamics under time delay and checked whether

ime delay causes instability or stability switching. Hence, the anal-

sis of the harvested system is qualitatively similar to the mod-

ls without harvesting. There are very few articles which partially

nvestigated the explicit effects of harvesting following numeri-

al simulations. Martin and Ruan [35] are the first who presented

he impact of harvesting explicitly in three distinct predator-prey

odels. In fact, their analytical theory only described the de-

ay induced stability behavior of the models. However, they ex-

lained the impact of harvesting using numerical simulation as the

odel becomes very complex to solve analytically due to constant

arvesting rate. They observed numerically that, when the de-

ay was incorporated in logistic term in Gause-type predator-prey

odel, prey harvesting stabilized the system which was at unsta-

le mode. Similarly, Kar and Pahari [24] studied RM model with

ime delay in logistic growth and concluded the same outcome

ike Martin and Ruan [35] when proportional harvesting strategy is

pplied to prey population. They conducted another numerical

imulation to show that predator harvesting has a destabilizing ef-

ect in the system dynamics. A Leslie–Grower predator-prey sys-

em with time delay in functional response was studied by Kar

nd Ghorai [21] and found through simulation that harvesting of

ither prey or predator can stabilize a pre-harvested unstable sys-

em. Meng et al. [38] have numerically established that either prey

r predator harvesting stabilized a predator-prey system incorpo-

ating Beddington–DeAngelis functional response which was at un-

table mode due to delay before harvesting. 

Our motivations for this research are as follows: the above dis-

ussion clearly claims that there is a need to conduct more re-

earch in this direction. Martin and Ruan [35] have only focused on

tudying the impact when prey is harvested. Therefore, we should

ay attention to analyze predator harvesting, as predator harvest-

ng is safe for the persistence of ecosystem. Moreover, predatory

sh is harvested at higher rate for commercial purposes. Martin

nd Ruan [35] , Kar and Ghorai [21] and Meng et al. [38] have

nly shown numerically that unstable dynamics can be stabilized

ue to harvesting. We would like to know whether any other dis-

inct dynamics is possible when predator-prey model takes differ-

nt form. Moreover, we examine if a stable system always stay

table due to harvesting in a delayed system. In addition, Ghosh

t al. [10] demonstrated that harvesting the prey or predator or

oth species can stabilize a non-delayed RM predator-prey sys-

em. Thus, it seems that the harvesting results in delayed and

on-delayed systems are qualitatively same. We verify if the above

tatement does hold in ecological system. Also Kar and Pahari [24] ,

ar [20] and Martin and Ruan [35] have mentioned that there is

 situation for which the coexisting equilibrium does not change

tability due to delay. We would like to reanalyze this result. We

ould also address here the implementation of MSY policy in de-

ayed system. We acknowledge Martin and Ruan [35] for showing

he research direction of implementing MSY policy in predator-

rey models. To the best of our knowledge, it is not addressed by

nyone. By and large, our motivations for this investigation are rel-

vant in these aspects. 

Most of the predator-prey systems are analyzed by varying the

ime delay as control parameters to describe several dynamics.

owever, it may not be very much relevant to vary as time delay

s an inherent factor in a system. In particular, when harvesting

s implemented in a fishery system, instead of varying time delay,

e have much freedom to regulate fishing effort since it is an
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cological fact that time delay factor changes in very slow time

cale. Thus, in our analysis we assume that time delay is invariant

n a system and fishing effort varies. 

The paper addresses the following major issues: 

(i) whether LV type model experiences only stability switching

due to time delay. 

(ii) whether there is any parametric restriction for which time

delay does not induces instability in RM model. 

(iii) whether harvesting can locally stabilize (respectively, desta-

bilize) the system when the unharvested system is at unsta-

ble dynamics (respectively, stable steady state mode). 

(iv) whether a stable steady state can always be obtained when

predator is harvested towards MSY level. 

The paper is organized as follows. Section 2 is devoted to de-

cription of dynamics of Lotka–Volterra type predator-prey model

ncorporating time delay. The impacts of harvesting in the model

re extensively studied. The existence of MSY at stable steady state

s also discussed. Section 3 deals with delay induced stability and

he harvesting effects in Rosenzweig–MacArthur predator-prey sys-

em. The last section discusses our main results and compares

hem with the existing literatures. Many new results are estab-

ished and some of the existing results are improved. This section

nds with future perspectives of research in this field. 

. Lotka–Volterra type model 

To response the issues raised in the Introduction Section, we

rst consider LV type predator-prey model. The dynamics of the

nharvested LV type system is analyzed when time delay is the

ontrol parameter. Then, the distinct dynamical behaviors are ex-

lained by varying harvesting effort, keeping time delay fixed. 

.1. Dynamics of delayed LV type model 

We consider the Lotka–Volterra type predator-prey model given

y the following coupled system: 

˙ x = rx 

(
1 − x ( t − τ ) 

K 

)
− αxy , 

˙ 
 = βxy − my . (1) 

Here x ( t ) and y ( t ) are the prey and predator population, respec-

ively, at time t, r is the intrinsic growth rate of the prey, K is

he carrying capacity of the prey population in the absence of the

redator, α the rate of prey consumption by the predator, β the

onversion rate of prey consumed into the predator growth rate

nd m is the mortality rate of the predator. 

The equilibrium points of the model are 

(0 , 0) , (K, 0) and (x ∗, y ∗) = 

(
m 

β
, 

r(Kβ − m ) 

αβK 

)
, 

here K > 

m 

β
for existence of interior equilibrium. 

To check for the local stability, we use the transformation u =
 − x ∗, v = y − y ∗ for obtaining the linearized system corresponding

o (1) as, 

 

∗ = − r 

K 

x ∗u ( t − τ ) − αx ∗v , 

v ∗ = βy ∗u. (2) 

he characteristic equation associated with the above linearized

ystem is given by, 
λ2 + 

r 

K 

x ∗λe −λτ + αβx ∗y ∗ = 0 

.e. λ2 + P λe −λτ + Q = 0 , (3) 

here P = 

r 
K x 

∗ and Q = αβx ∗y ∗. We first check for the stability

hen τ = 0 . When τ = 0 , the roots are given by, 

= 

−r 
K 

x ∗ ±
√ 

( r 
K 

x ∗) 2 − 4 αβx ∗y ∗

2 

. 

Since both the roots have negative real part, the interior steady

tate is locally asymptotically stable at τ = 0 . We now examine the

tability behavior of the system with increase in τ . 

Let us check for the existence of a positive ω such that λ = iω. 

When λ = iω, the characteristics Eq. (3) after separating the

eal and imaginary parts, can be written as, 

ω 

2 + ω 

r 

K 

x ∗ sin (ωτ ) + αβx ∗y ∗ = 0 (4a) 

r 

K 

x ∗ω cos (ωτ ) = 0 . (4b) 

From the Eq. (4b) , we get 

τ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

π

2 

+ 2 nπ = θ1 

3 π

2 

+ 2 nπ = θ2 , n = 0 , 1 , 2 , ... 

f ωτ = 

π
2 + 2 nπ, then Eq. (4a) is reduced to 

ω 

2 − ω 

r 

K 

x ∗ − αβx ∗y ∗ = 0 . 

he above equation has only one positive root for ω which is given

y, 

 = ω + = 

P + 

√ 

P 2 + 4 Q 

2 

. 

ence, we can obtain 

= τ+ 
n = 

π

2 ω + 
+ 

2 nπ

ω + 
, n = 0 , 1 , 2 , ... 

imilarly, when ωτ = 

3 π
2 + 2 nπ, the corresponding equation 

ω 

2 + ω 

r 

K 

x ∗ − αβx ∗y ∗ = 0 

lso produces a unique positive value ω − given as, 

 − = 

−P + 

√ 

P 2 + 4 Q 

2 

. 

ence, we can compute 

= τ−
n = 

3 π

2 ω −
+ 

2 nπ

ω −
, n = 0 , 1 , 2 , ... 

he above analysis demonstrates that at least one pair of eigen-

alues has zero real part at τ = τ±
n . We now verify whether the

eal part of the eigenvalues changes their sign when τ crosses τ±
n .

n order to know the rate of change of real part of the eigenval-

es with respect to τ at τ±
n , we take into account the well known

ransversality condition to obtain, 

d λ

d τ

)−1 

= 

−λ2 + Q 

λ2 (λ2 + Q ) 
− τ

λ
. 

e know that τ = τ±
n corresponds λ = ±iω. Hence, 
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(
d λ

d τ

)−1 
∣∣∣∣∣
τ= τ±

n 

= 

ω 

2 + Q 

−ω 

2 
(
−ω 

2 + Q 

) − τ

iω 

⇒ sign 

(
Re 

(
d λ

d τ

))−1 
∣∣∣∣∣
τ= τ±

n 

= sign 
(
ω 

4 − Q 

2 
)
. 

Squaring and adding (4a) and (4b) , we have, 

2 ω 

4 − P 2 ω 

2 − 2 Qω 

2 + Q 

2 − ω 

4 = 0 . 

Hence, 

sign 

(
d (Reλ) 

d τ

)−1 ∣∣∣∣
τ= τ±

n 

= sign (2 ω 

2 − (P 2 + 2 Q )) . 

Finally, 

d Reλ

d τ

∣∣∣∣
τ+ 

n 

> 0 & 

d Reλ

d τ

∣∣∣∣
τ−

n 

< 0 . 

The above conditions reveal that if real part of any eigenvalue is

zero at τ = τ+ 
n (respectively τ = τ−

n ), real part of the eigenvalue

becomes positive (respectively negative) for increasing τ near τ+ 
n 

(respectively τ−
n ). Consequently, Hopf-bifurcations take place at

τ = τ±
n for the interior equilibrium ( x ∗, y ∗). 

We are now interested to know the number of eigenvalues

crossing the imaginary λ -axis. The following lemma will verify the

same. 

Lemma 2.1. The roots of the function F (λ, τ ) = λ2 + aλe −λτ + c,

where a, c > 0, are simple on the imaginary axis [5] . 

Proof. Let us suppose the function F ( λ, τ ) has a root i ω on the

imaginary axis and it is not simple. Then 

∂F 
∂λ

| λ= iω = 0 i.e. 2 λ + (1 −
τλ) be −λτ = 0 for any λ = iω. Substituting the value of λ = iω and

the value of e −λτ from F (λ, τ ) = 0 , we get, ω 

2 + c = 0 , which is

impossible. Hence, the eigenvalues i ω and −iω of our linearized

system are simple. 

This lemma also states that at each τ = τ+ 
n (or τ = τ−

n ) corre-

sponding to our linearized system only a pair of eigenvalues cross

the imaginary axis. �

Remark. Since ω + > ω −, 

τ+ 
n +1 − τ+ 

n = 

2 π

ω + 
< 

2 π

ω −
= τ−

n +1 − τ−
n , 

for n = 0 , 1 , 2 , ... . 

We now establish the stability theory due to increasing delay

as follows. 

Theorem 2.1. If τ+ 
0 

< τ+ 
1 

< τ−
0 

, the system maintains stable behavior

for τ ∈ [0 , τ+ 
0 

) , experience a Hopf-bifurcation at τ = τ+ 
0 

and finally

becomes unstable for τ > τ+ 
0 

. 

Proof. We assume that τ+ 
0 

< τ+ 
1 

< τ−
0 

. The system is stable for τ =
0 as the real part of both the roots associated with the character-

istic equation are negative. When delay is increased, then λ = iω + 
will be a simple eigenvalue of the characteristic equation at τ = τ+ 

0 
(see Lemma 2.1 ). Since eigenvalues occur in complex conjugate,

there exists exactly one pair of eigenvalues λ = ±iω + at τ = τ+ 
0 

. 

The positivity of the associated transversality condition at τ =
τ+ 

0 
suggests that the aforementioned pair of eigenvalues cross the

imaginary axis and contain positive real part when delay increases

and close to τ+ 
0 

. Hence the system becomes unstable. 

Again when the delay τ reaches at τ+ 
1 

, again another pair of

eigenvalues take the form λ = iω + . Then the transversality condi-

tion at τ = τ+ 
1 

tells us that the said pair cross the imaginary axis.

Therefore, there exists two pair of eigenvalues with real part posi-

tive when τ > τ+ 
1 

. Hence the system becomes unstable. 
Using the similar arguments, a pair of eigenvalues of the

orm λ = ±iω − occurs at τ = τ−
0 

. Then the transversality condition

auses the said pair eigenvalues to cross the imaginary axis and

btain negative real part. Thus, pair of eigenvalues still stay with

ositive real part when τ increases through τ+ 
1 

and instability still

ersists. 

Since at each τ = τ+ 
n or τ−

n , only one pair of eigenvalues cross

he imaginary axis and there is no possibility of the occurrence of

wo consecutive τ−
n (see Remark 2.1 ), the instability persists for-

ver with τ > τ+ 
0 

. �

xample 2.1. We verify the existence of such dynamical behavior

y considering r = 0 . 8 , K = 20 , α = 0 . 4 , β = 0 . 1 , m = 0 . 9 in model

1) . The interior equilibrium associated with the system is (9, 1.1).

ere the values of τ+ 
0 

= 1 . 8823 , τ+ 
1 

= 9 . 4113 and τ−
0 

= 9 . 9308 . It

s observed that the system is stable for τ ∈ [0, 1.8823] and for all

> 1.8823 it is unstable. 

heorem 2.2. If 0 < τ+ 
0 

< τ−
0 

< τ+ 
1 

< τ−
1 

< . . . < τ+ 
k 

< τ+ 
k +1 

< τ−
k 

<

 . . for some positive integer k, then k switches from stability to

nstability to stability occurs and eventually for τ > τ+ 
k 

the system

ecomes unstable. Further at τ = τ±
n , the system experiences Hopf-

ifurcation. 

roof. Let us first consider the inequality τ+ 
0 

< τ−
0 

< τ+ 
1 

. Here,
+ 
0 

, τ−
0 

, τ+ 
1 

are the time delays for which Hopf-bifurcation occurs. It

s already shown that the system is stable at τ = 0 due to presence

f negative roots of the characteristic Eq. (3) . An increase in τ leads

o a pair of purely imaginary roots ( ±iω + ) of (3) at τ = τ+ 
0 

. The

ransversality condition at τ+ 
0 

indicates the appearance of eigenval-

es with positive real part for the said pair when delay increases

hrough τ+ 
0 

. Thus, the system will no longer be in stable state. Fur-

her increase in the value of τ will again lead to a purely imaginary

oot at τ−
0 

. But the transversality condition at τ−
0 

indicates that the

wo eigenvalues with positive real part, which possess purely com-

lex values ( ±iω −) at τ−
0 

, eventually has negative real part and in-

rease in τ through τ−
0 

, which results in stability of the system.

ence, a stability switching from stable to unstable to stable takes

lace at the interior equilibria of the system (1) with increase in τ .

Similarly, for all other τ ≤ τ−
k 

, the switching of stability will

e continued followed by the earlier discussion till τ < τ+ 
k 

. There-

ore, we can observe the occurrence of k number of stability

witching. Once the delay satisfy τ+ 
k 

< τ+ 
k +1 

< τ−
k 

, the arguments

n Theorem 2.1 reveals that the system becomes unstable for all

> τ+ 
k 

. �

orollary 2.1. The number of switches from stability to instability

nd back to stability which may take place in the system (1) can

e determined by the smallest value of k which satisfies the equa-

ion 4(k + 1) P > 

√ 

P 2 + 4 Q . Further as in the case of Theorem 2.1 ,

he absence of stability switching will make the system (1) satisfy the

quation 4 P > 

√ 

P 2 + 4 Q . 

xample 2.2. Let us consider the parameters as: r = 1 , K = 180 ,

 = 1 , α = 0 . 3 and β = 0 . 1 in model (1) . Then the coexisting

teady state (x ∗, y ∗) = (10 , 3 . 1481) of the non-delayed model is

symptotically stable. Now by increasing the values of τ , the sys-

em experiences 8 switching from stability to instability and back

o stability. However, there exists τ+ 
8 

, such that the system is un-

table for all τ > τ+ 
8 

. The values of different τ±
n ’s are listed. 
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τ+ 
0 

≈ 1 . 5708 τ−
0 

≈ 4 . 9896 

τ+ 
1 

≈ 7 . 8540 τ−
1 

≈ 11 . 6424 

τ+ 
2 

≈ 14 . 1372 τ−
2 

≈ 18 . 2952 

τ+ 
3 

≈ 20 . 4204 τ−
3 

≈ 24 . 9479 

τ+ 
4 

≈ 26 . 7035 τ−
4 

≈ 31 . 6007 

τ+ 
5 

≈ 32 . 9867 τ−
5 

≈ 38 . 2535 

τ+ 
6 

≈ 39 . 2699 τ−
6 

≈ 44 . 9063 

τ+ 
7 

≈ 45 . 5531 τ−
7 

≈ 51 . 5591 

τ+ 
8 

≈ 51 . 8363 τ−
8 

≈ 58 . 2119 

τ+ 
9 

≈ 58 . 1195 

As we have discussed earlier, the system (1) is stable

or all τ ∈ (0 , τ+ 
0 

) ∪ (τ−
0 

, τ+ 
1 

) ∪ (τ−
1 

, τ+ 
2 

) ∪ (τ−
2 

, τ+ 
3 

) ∪ (τ−
3 

, τ+ 
4 

) ∪
(τ−

4 
, τ+ 

5 
) ∪ (τ−

5 
, τ+ 

6 
) ∪ (τ−

6 
, τ+ 

7 
) ∪ (τ−

7 
, τ+ 

8 
) and is unstable for

ll τ ∈ (τ+ 
0 

, τ−
0 

) ∪ (τ+ 
1 

, τ−
1 

) ∪ (τ+ 
2 

, τ−
2 

) ∪ (τ+ 
3 

, τ−
3 

) ∪ (τ+ 
4 

, τ−
4 

) ∪
(τ+ 

5 
, τ−

5 
) ∪ (τ+ 

6 
, τ−

6 
) ∪ (τ+ 

7 
, τ−

7 
) ∪ (τ+ 

8 
, ∞ ) . At τ = τ±

n , Hopf-

ifurcation occurs. 

.2. Harvesting results in LV type model 

Time delay in an ecological system may vary slowly or more

rominently due to seasonal changes, human induced perturba-

ions or some inherent activity of the concerned species. A slow

hange in time delay may be considered as constant. In this pa-

er, we assume that delay in a specific system is not changing in

ime. In fact, ecological parameters (such as time delay) are not

uch affected from outside in peaceful environment (normal cir-

umstances), but we can control the harvesting effort as per our

onvenient. Therefore, considering the fixed time delay in the sys-

em, we would like to investigate the dynamics under harvest-

ng. The predator-prey system can be in a specific dynamics mode

stable or non-equilibrium) for a fixed time delay. We now suc-

essively study on how the unexploited dynamics can be changed

hen prey and predator are harvested individually. 

.2.1. Prey harvesting 

We consider the Lotka–Volterra type predator-prey model with

ime delay τ in the prey specific growth rate under prey harvesting

s: 

x = rx 

(
1 − x ( t − τ ) 

K 

)
− αxy − E 1 x, 

˙ 
 = βxy − my , (5) 

here E 1 is the effort of harvesting of prey population. 

The equilibrium points of the model are 

( 0 , 0 ) , 
(

K ( r − E 1 ) 

r 
, 0 

)
and 

(
m 

β
, 

(
r ( Kβ − m ) 

Kαβ
− E 1 

α

))
. 

he effort of harvesting for the existence of positive equilibrium

ust satisfy 

 < E 1 < 

r(Kβ − m ) 

Kβ
. (6)

Linearizing the system near positive interior equilibrium, we get

he characteristic equation, 

2 + λe −λτ
(

rm 

Kβ

)
+ m 

(
r(Kβ − m ) 

Kβ
− E 1 

)
= 0 . (7)

As in the previous section, we observe that, when τ = 0 , the

ystem is stable. Let us assume, there exist value of λ, λ = iω
 ω > 0), such that change in stability takes place from stable to un-

table and vice versa. 
Similarly, as in the previous section, we substitute the value of

= iω in (7) to get the values of ω as, 

 ±(E 1 ) = 

±P 1 + 

√ 

P 2 
1 

+ 4 Q 1 

2 

(8) 

here P 1 = 

rm 

Kβ
and Q 1 = m 

(
r(Kβ−m ) 

Kβ
− E 1 

)
. 

And the values of τ corresponding to the above ω + and ω − are

iven as, 

+ 
n (E 1 ) = 

π

2 ω + 
+ 

2 nπ

ω + 
(9) 

nd 

−
n (E 1 ) = 

3 π

2 ω −
+ 

2 nπ

ω −
. (10)

here n = 0 , 1 , ... 

Here, unlike the previous section, based on the different ef-

orts of harvesting E 1 , we get different set of values of ω ± ( E 1 ) and
±
n (E 1 ) . Accordingly, we get the below lemma and theorems. 

emark. Here τ+ 
n (0) is the time delay when there is no harvest-

ng. For simplicity we sometimes use τ+ 
n instead of τ+ 

n (0) . 

emma 2.2. In system (5) , the values of τ±
n (E 1 ) increases with in-

rease in the harvesting effort E 1 , i.e. τ±
n (E 1 ) is an increasing function

f E 1 . 

roof. Clearly it can be seen from (8) , that with increase in E 1 
eeping all the other parameters fixed, Q 1 decreases leading to de-

rease in ω ± ( E 1 ) and increase in τ±
n (E 1 ) . Thus τ±

n (E 1 ) is an in-

reasing function of E 1 . �

heorem 2.3. If the pre-harvested system (1) incorporates time delay

 in the range (0 , τ+ 
0 

(0)) , prey harvesting cannot change the stability

ature of the system. 

roof. If time delay T ∈ (0 , τ+ 
0 

(0)) , it results the stability in the

nharvested system. Now it can be seen from Lemma 2.2 that
+ 
0 

(E 1 ) will increase with increasing effort E 1 . Thus T ∈
(0 , τ+ 

0 
(0)) ⊆ (0 , τ+ 

0 
(E 1 )) ∀ E 1 . Hence the stable state of the unhar-

ested system will persist. �

Now we consider the ecological parameters satisfying the con-

ition τ+ 
0 

(0) < τ+ 
1 

(0) < τ−
0 

(0) (see Theorem 2.1 ). Then the system

oes not exhibit any stability switching. Thus, a change in delay

an cause instability in the pre-harvested system. From the above

iscussion, it is clear that harvesting the prey species does not

hange the stability when T ∈ (0 , τ+ 
0 

(0)) . We would like to inves-

igate the stability due to harvesting when delay T > τ+ 
0 

(0) . The

elated results are presented in the following theorem. 

heorem 2.4. Under the above parameter conditions, the following

wo cases arise: 

(i) If T ∈ (τ+ 
0 

(0) , τmax ) , the instability in the system can be re-

moved by a suitable effort and further increase of the ef-

fort does not alter the stability of the system. Here τmax =
lim 

E 1 → E ∗
τ+ 

0 
(E 1 ) and E ∗ = 

r(Kβ−m ) 
Kβ

. 

(ii) If T > τmax , harvesting cannot stabilize the system. 

roof. 

(i) When the prey population is harvested, the system is sta-

ble for all (E 1 , T ) ∈ (0 , E ∗) × (0 , τ+ 
0 

(E 1 )) and unstable for

(E 1 , T ) ∈ (0 , E ∗) × (τ+ 
0 

(E 1 ) , ∞ ) . Let T ∈ (τ+ 
0 

(0) , τmax ) . Since

τ+ 
0 

(E 1 ) is an increasing function of effort (see Lemma 2.2 ),

the coordinate (E 1 , T ) , which lies in (0 , E 1 ) × (τ+ 
0 

(E 1 ) , τmax )

for smaller effort, can be shifted to the region (0 , E ∗) ×
(0 , τ+ 

0 
(E 1 )) beyond a critical effort. Hence the system

achieves the stability. 



6 B. Barman and B. Ghosh / Chaos, Solitons and Fractals 0 0 0 (2019) 1–16 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.44

E
1

0

5

10

15

20

25
n

Stable region

0
+(E1)

max

1
+(E1)

0
- (E1)

Fig. 1. The curves τ = τ±
n (E 1 ) are increasing function of effort. The stability region 

in the E 1 τ -plane under harvesting is shown. 
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observed in the Theorem 2.4 (b). 
(ii) Now for T > τmax , any coordinate (E 1 , T ) cannot be shifted

into the region (0 , E ∗) × (0 , τ+ 
0 

(E 1 )) . Hence the system will

remain unstable for any harvesting effort. �

We will explain the above theorem with numerical simulations.

Consider the parameters as given in Example 2.1 . For coexistence

of both the populations, effort must lie in the range (0, 0.44). The

dashed curves are plotted for τ = τ−
n (E 1 ) (n = 0 , 1) (see Fig. 1 ).

The horizontal solid black curve represent τ = τmax and the re-

maining solid curves represents τ = τ+ 
n (E 1 ) (n = 0 , 1) . The region

enclosed by the E 1 -axis and the τ = τ+ 
0 

(E 1 ) curve is the region of

stability and the whole region afterwards is the region of instabil-

ity. It can be seen that for T lying between (0 , τ+ 
0 

(0)) , the coor-

dinate (E 1 , T ) stays in the region of stability for increasing E 1 as

stated in Theorem 2.4 (a). Here τmax = 4 . It can be seen that for

T ∈ (τ+ 
0 

(0) , τmax ) , the coordinate (E 1 , T ) will stay in the unsta-

ble region bounded by τ = τmax and τ = τ+ 
0 

(E 1 ) for smaller effort.

However, the coordinate enters into the stability region for increas-

ing effort as stated in Theorem 2.4 (b) and for T > τmax , the point

(E 1 , T ) remains in the unstable region for any effort as stated in

Theorem 2.4 (c). 

The above analysis reveals that the harvested system does not

change stability behavior if the unharvested system is stable. On

the other hand, if the time delay is larger ( T > τmax ), instability

behavior can not be altered by prey harvesting. However, for a

moderate length time delay ( τ+ 
0 

(0) < T < τmax ), the system can be

stabilized beyond some critical effort. 

Now we are going to investigate the harvesting impact when

the unharvested system exhibits delay induced stability switching.

We consider the ecological parameters given in Example 2.2 for

the system (5) . It is observed that the unharvested system experi-

ence eight stability switching from stable to unstable and back to

stable due to delay. However, after the eight stability switches, fur-

ther increase in delay will result in instability in the system as can

be seen in Example 2.2 . The range of E 1 for existence of positive

equilibrium is (0, 0.94 4 4). Likewise the previous analysis, we plot

different curves τ = τ±
n (E 1 ) as shown in Fig. 2 . 

The solid curves and dashed curves in the Fig. 2 represents

τ = τ+ 
n (E 1 ) and τ = τ−

n (E 1 ) , (n = 0 , 1 , 2 , ... ) respectively. The re-

gion between the E 1 -axis and the first solid curve is the region

of stability. The region enclosed by any solid curve and succeed-

ing dashed curve is the region of instability. The region enclosed

by any dashed curve and succeeding solid curve are the region of

stability until intersection takes place between these two curves

for increasing effort. After the intersection, there will be simulta-

neous appearance of two solid curves. These consecutive appear-
nce of two solid curves results in instability regions between the

urves as well as the regions above the curves, for that particu-

ar range of E 1 . Let us denote the region bounded by the E 1 -axis

nd the τ = τ+ 
0 

(E 1 ) as S 1 , the region bounded by τ = τ+ 
n (E 1 ) and

= τ−
n (E 1 ) as U n +1 , and the region bounded by τ = τ−

n (E 1 ) and

= τ+ 
n +1 

(E 1 ) as S n +2 ( n = 0 , 1 , ... ). It can be observed that the re-

ions S 1 , S 2 , S 3 are the region of stability and the regions U 1 , U 2 are

he region of instability until the two τ = τ+ 
n (E 1 ) and τ = τ+ 

n +1 
(E 1 )

ppear one after another which results in appearance of instability

egions. 

The following stability behavior can be observed due to harvest-

ng (see Fig. 2 ) once the time delay is invariant in the system (5) . 

(i) For T ∈ (0 , τ+ 
0 

(0)) = (0 , 1 . 5708) , the coordinate (E 1 , T ) re-

mains in region S 1 for any effort of harvesting. Thus, the sys-

tem is stable throughout. 

(ii) For T ∈ (τ+ 
0 

(0) , τ−
0 

(0)) = (1 . 5708 , 4 . 9896) , the coordinate

(E 1 , T ) stays in region U 1 until the effort of harvesting is

large enough to push it from region U 1 to S 1 . Thus, for larger

effort of harvesting, the instability can be removed and both

the population will coexist at the steady state. 

(iii) For T ∈ (τ−
0 

(0) , τ+ 
1 

(0)) = (4 . 9896 , 7 . 8540) , the coordinate

(E 1 , T ) shifts from region S 2 to U 1 and then to S 1 with in-

creasing harvesting strength. In fact the coordinate enters

into the region S 1 when effort is sufficiently close to the crit-

ical effort E ∗. Such an harvesting effort leads to a steady sta-

ble state with smaller predator density. Shifting of the re-

gions indicates that the stable unharvested system can be

destabilized by harvesting effort, but the system regains its

stability for further increasing effort. Hence, one stability

switching occurs for increasing effort. 

(iv) For T ∈ (τ+ 
1 

(0) , τ−
1 

(0)) = (7 . 8540 , 11 . 6424) , the coordinate

(E 1 , T ) shifts from region U 2 to S 2 and then to U 1 with

increasing harvesting effort. Shifting of the regions indi-

cates that the instability in the unharvested system can be

made stable with increasing effort, but further increase can

again lead to instability in the system. Hence, an instability

switching occurs. 

(v) For T ∈ (τ−
1 

(0) , τ+ 
2 

(0)) = (11 . 6424 , 14 . 1372) , there is suc-

cessive shifting of the coordinate (E 1 , T ) through the regions

S 3 , U 2 , S 2 and U 1 with increasing harvesting strength. 

(vi) For T > τ+ 
max (E ′ ) , the system remains unstable for all effort

of harvesting, where τ+ 
max (E ′ ) is the maximum of all the

τ+ 
k 

(E ′ ) such that k ≤ 8 is the number of switching of the

system for each E 1 . We note that it is the case which was
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(  
.2.2. Predator harvesting 

In this section, we deal with the Lotka–Volterra type model

nder predator harvesting. The model under predator harvesting

eads as: 

˙ x = rx 

(
1 − x ( t − τ ) 

K 

)
− αxy , 

˙ 
 = βxy − my − E 2 y, (11) 

here E 2 is the effort of harvesting of predator population. 

The steady states of the model are 

(0 , 0) , (K, 0) , 

(
m + E 2 

β
, r 

(
Kβ − m 

Kαβ
− E 2 

Kαβ

))
. 

he effort of harvesting for the co-existence of positive steady state

ust satisfy 

 < E 2 < Kβ − m. (12)

inearizing the system near positive interior equilibrium, we obtain

he following characteristics equation, 

2 + λe −λτ

(
r(m + E 2 ) 

Kβ

)
+ 

r 

Kβ
(m + E 2 ) { Kβ − (m + E 2 ) } = 0 . 

(13) 

As before, we compute the eigenvalues for the occurrence of

opf-bifurcation. The eigenvalues i ω ± ( E 2 ), where Hopf-bifurcation

ccurs, are determined as: 

 ±(E 2 ) = 

±P 2 + 

√ 

P 2 
2 

+ 4 Q 2 

2 

(14) 

here P 2 = 

r(m + E 2 ) 
Kβ

and Q 2 = 

r 
Kβ

(m + E 2 ) { Kβ − (m + E 2 ) } . 
And the values of τ corresponding to ω + and ω − are given as,

+ 
n (E 2 ) = 

π

2 ω + 
+ 

2 nπ

ω + 
(15) 

nd 

−
n (E 2 ) = 

3 π

2 ω −
+ 

2 nπ

ω −
. (16)

here n = 0 , 1 , ... 

Here, we attain different set of values of ω ± ( E 2 ) and τ±
n (E 2 )

ased on the different effort s of harvesting E 2 . We divide the anal-

sis for predator harvesting into two different cases. 

Case I: When the unharvested system does not experience de-

ay induced stability switching 

In this case, we assume that the unharvested system only ex-

ibits delay induced instability, in the sense that, the system does

ot gain the stability back due to increasing delay once the system

ooses its stability. In other words, there exists τ+ 
0 

, such that, the

ystem is stable for τ < τ+ 
0 

and unstable for τ > τ+ 
0 

with a Hopf-

ifurcation at τ = τ+ 
0 

. We show that the curve τ = τ+ 
0 

(E 2 ) takes

wo different forms; one is decreasing and the other is unimodal

ith a minimum, in the co-existing effort range. Hence, distinct

ynamical behavior under harvesting can be described as follows. 

We consider the parameters to be: r = 1 , K = 20 , m = 0 . 1 , α =
 . 1 , β = 0 . 01 , such that it satisfies the condition τ+ 

0 
(0) < τ+ 

1 
(0) <

−
0 

(0) . The populations will persist for effort of harvesting lying

n the range (0, 0.1). The solid blue curve represent τ = τ+ 
0 

(E 2 )

hich is decreasing in effort (see Fig. 3 ). The two black curves

epresent τ = τmax and τ = τ+ 
0 

(0) , where τmax = lim 

E 2 → 0 . 1 

τ+ 
0 

(E 2 ) . The

egion enclosed by the E 2 -axis and τ = τ+ 
0 

(E 2 ) is the region of sta-

ility and the whole region afterwards is the region of instability.

he following stability behavior were observed based on the range

f T value. 
(i) For T lying between (0 , τmax ) , the coordinate (E 2 , T ) stays

in the region of stability for all effort, as can be seen from

the Fig. 3 . Hence, harvesting cannot destabilize the system. 

(ii) For T ∈ (τmax , τ
+ 
0 

(0)) , the coordinate (E 2 , T ) stays in the

stability region for smaller effort, but with increasing effort,

the coordinate enters into the region of instability as is clear

from the Fig. 3 . Hence, the unharvested system which was

stable can be changed to instability, and the stability cannot

be regained under increasing harvesting. 

(iii) For T > τ+ 
0 

(0) , the coordinate (E 2 , T ) remains in the unsta-

ble region throughout. Thus, the instability will persist for

any effort. 

The above observation reveals that predator harvesting does not

tabilize the system when the unharvested system is in the unsta-

le mode. Unlike prey harvesting ( Fig. 1 in Section 2.2.1 ), which

ave stabilized the unstable system, predator harvesting have a

estabilizing effect. 

We consider the parameters sets as is taken in

xample 2.1 which satisfies the condition τ+ 
0 

(0) < τ+ 
1 

(0) < τ−
0 

(0) .

he harvesting effort should lie in the range (0, 1.1) for co-

xistence of species. The solid blue curve represent τ = τ+ 
0 

(E 2 )

see Fig. 4 ) which is unimodal with a minimum value τ . The
min 
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region enclosed by the E 2 -axis and τ = τ+ 
0 

(E 2 ) is the region of sta-

bility and the whole region afterwards is the region of instability.

The curves τ = τmin , τ = τmax , τ = τ+ 
0 

(0) are plotted accordingly

where τmax = lim 

E 2 → 1 . 1 

τ+ 
0 

(E 2 ) . The following stability behavior was

observed based on the chosen T value. 

(i) For T lying between (0 , τmin ) , the coordinate (E 2 , T ) stays

in the region of stability for all effort as can be seen from

Fig. 4 . Thus, harvesting has no influence over the stability of

the system. 

(ii) For T ∈ (τmin , τ
+ 
0 

(0)) , the coordinate (E 2 , T ) is stable for

smaller effort but with increasing harvesting pressure, enters

the instability region and again shifts to the stability region

for larger effort. Hence, harvesting induces stability switch-

ing in the system. 

(iii) For T ∈ (τ+ 
0 

(0) , τmax ) , the coordinate (E 2 , T ) shifts from re-

gion of instability to region of stability when effort is signifi-

cantly large. Henceforth, harvesting can remove the instabil-

ity prevailing in the unharvested system. 

(iv) For T > τmax , the coordinate (E 2 , T ) remains in the unsta-

ble region throughout. Hence, harvesting cannot change the

instability for any effort. 

The above discussion infers that harvesting stabilizes the

system beyond some critical effort unlike the previous case of

predator harvesting ( Fig. 3 ). Further, stability switching can be ex-

perienced in this case which was absent in the previous cases of

prey and predator harvesting ( Fig. 1 in Section 2.2.1 and Fig. 3 ). 

Case II: When the unharvested system experiences delay in-

duced stability switching 

Now we are going to investigate the harvesting impact when

the unharvested system exhibits delay induced switching. Taking

all the values of r, K, m, α, β as in Example 2.2 for the un-

harvested system (1) , it is observed that the system experiences

eight stability switching due to delay. Introducing predator har-

vesting in the system (5) , the effort of harvesting E 2 for exis-

tence of interior equilibrium was found to be lying in the range

(0, 17). The solid curves and dashed curves represents τ = τ+ 
n (E 2 )

and τ = τ−
n (E 2 ) , (n = 0 , 1 , 2 , ... ) , respectively corresponding to in-

creasing effort (see Fig. 5 ). Also the solid horizontal black curve

is the curve τ = τ ′ 
min 

, where τ ′ 
min 

is the minimum of τ−
0 

(E 2 ) . The

region S 1 enclosed between the E 2 -axis and the solid blue curve

τ = τ+ 
0 

(E 2 ) is the region of stability. The region enclosed by any

solid curve and succeeding dashed curve is the region of instabil-
ty. The region bounded by any dashed curve and succeeding solid

urve above is the region of stability until intersection takes place

etween these two curves for increasing effort. After the intersec-

ion there will be simultaneous appearance of two solid curves.

hese consecutive appearance of two solid curves results in in-

tability regions between the curves as well as regions above the

urves for that particular range of E 2 . According to the closed re-

ions enclosed by the horizontal black curve and τ±
n (E 2 ) , regions

 1 , U 11 , U 12 , S 2 , U 2 and U 3 are defined as follows. 

(i) U 1 is the closed region of instability enclosed between the

black horizontal curve and τ = τ+ 
0 

(E 2 ) curve. 

(ii) U 11 is the closed region of instability enclosed between the

horizontal black curve and τ = τ−
0 

(E 2 ) curve. 

(iii) U 12 is also the closed region of instability enclosed be-

tween the horizontal black curve, τ = τ−
0 

(E 2 ) and τ =
τ+ 

1 
(E 2 ) curve. 

(iv) S 2 is the closed region of stability enclosed between τ =
τ−

0 
(E 2 ) and τ = τ+ 

1 
(E 2 ) . 

(v) U 2 is the closed region of instability enclosed between τ =
τ+ 

1 
(E 2 ) , τ = τ−

1 
(E 2 ) , τ = τ+ 

2 
(E 2 ) , and τ = τ−

0 
(E 2 ) . 

(vi) U 3 is the closed region of instability enclosed between τ =
τ+ 

1 
(E 2 ) , τ = τ−

0 
(E 2 ) . 

Now it can be seen in the Fig. 5 that, for T ∈ (0 , τ+ 
0 

(0)) , the

tability behavior will be same as was explored in the previous

ase of predator harvesting (see Fig. 4 ). 

Some of the other significant stability behaviors (including har-

esting induced stability switching), that can be noticed, are as fol-

ows. 

(i) For T ∈ (τ ∗, τ ′ 
min 

) (where τ ∗ = max { τ+ 
0 

(0) , τmax } with

τmax = lim 

E 2 → E ∗
τ+ 

0 
(E 2 ) and E ∗ = Kβ − m ), instability of the

system will persist throughout and hence, harvesting cannot

stabilize the system. 

(ii) For T ∈ (τ ′ 
min 

, τ
′′ 
min 

) , where τ
′′ 
min 

is the minimum value of

τ+ 
1 

(E 2 ) (the solid yellow curve), the system experiences in-

stability switching because of the shifting of the coordinate

(E 2 , T ) from region U 11 to S 2 to U 12 . 

.2.3. Maximum sustainable yield and stability 

In this subsection, we study the influence of MSY policy in

he Lotka–Volterra type model under predator harvesting. As prey

arvesting towards MSY drive the predator populations to extinc-

ion, we focus our analysis for predator harvesting at MSY level.

t is well established fact, that the co-existing equilibrium is glob-

lly stable in non-delayed LV type predator-prey model and hence,

arvesting the predators at MSY level maintain the stability as

ell [29] . We would like to know whether such stability result is

eneric when the unharvested system involves time delay factor. 

The interior steady state for predator harvesting is given as: 

(x ∗, y ∗) = 

(
m + E 2 

β
, r 

(
Kβ − m 

Kαβ
− E 2 

Kαβ

))
. 

For co-existence of the interior steady state, the effort E 2 must

ie in the range (0 , Kβ − m ) . The yield at the equilibrium is: 

 ( E 2 ) = E 2 y 
∗

= E 2 r 

(
Kβ − m 

Kαβ
− E 2 

Kαβ

)
. 

As Y ( E 2 ) is a quadratic function in E 2 , it must attend a maxi-

um when 

 

MSY 
2 = 

Kβ − m 

2 

. 

From the above expression, it is clear that MSY is achieved at

quilibrium and E MSY lies at the middle of the effort range for

2 
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depicted for two different parameter sets. It is shown that the system may lose its stability when harvest quota is set at MSY level. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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hich both populations persist. However, our interest is to estab-

ish whether the system is stable at MSY harvest limit. In this

ontext, we recall Figs. 3 and 4 . Now we plot the vertical doted

urve E 2 = (Kβ − m ) / 2 in the E 2 − τ± plane along with the curve

= τ+ 
0 

(E 2 ) in both the figures and rename them as Fig. 6 (a) and

b), respectively. 

We assume that the curve E 2 = 

Kβ−m 

2 and τ = τ+ 
0 

(E 2 ) inter-

ect at (E MSY 
2 

, τ ∗) in both the figures. The following stability phe-

omenon can occur. 

a. If T < τ ∗ in the unharvested system, then the coexisting equi-

librium is stable. In that case, harvesting at MSY produces a sta-

ble stock. 

b. If T ∈ (τ ∗, τ+ 
0 

(0)) in the unharvested system, then the coexist-

ing equilibrium is stable as well. In that case, harvesting at MSY

does not produce a stable stock. 

c. If T > τ+ 
0 

(0) in the unharvested system, the coexisting steady

state is unstable and the equilibrium stock towards MSY harvest

level remains unstable. 

Thus, there is no guarantee that the system maintain stability

owards the maximum yield, if the unharvested system is stable.

n the other hand, MSY does not exist at stable state when the

nharvested system is unstable. Similar phenomenon occurs even

hen we consider more complex parametric situation correspond-

ng to the Fig. 5 . However, in more complex case, we observe that

arvesting the predator at MSY promotes stability even when the

nharvested system is unstable. This result can be explained by

onsidering the regions U 11 and S 2 in Fig. 5 . Under the considered

xplanation, E MSY 
2 

= 8 . 5 . One can choose T = 3 in the unharvested

ystem. Then the system becomes unstable (link with the left side

ertical boundary of the unstable region U 11 ). However, if we em-

loy effort at E MSY 
2 

, the system becomes stable (corresponds to the

tability region S 2 ). 

. Rosenzweig–MacArthur model 

It is always difficult task to investigate complicated mathe-

atical models analytically. To avoid such complexities, theoret-

cal ecologists always prefer to propose simple Lotka–Volterra or

otka-Volterra type [28,29] predator-prey systems and validate the

esults in more general ecological systems. In this section, we ex-

lore results in the Rosenzweig–MacArthur predator-prey system.

he aim of this analysis is to understand the generality of the out-

omes obtained from our earlier Lotka–Volterra type system. 
In fact, unlike LV type model, RM model can exhibit oscillations

43] . Very recently, several harvesting results in RM model with-

ut time delay are discussed by Ghosh et al. [10] and Tromeur and

oeuille [51] . On the other hand, delayed RM model [20] and in

eneral Gause-type predator-prey system [35] are investigated in

rder to explain harvesting impact. In the succeeding section, we

iscuss the delay induced dynamics in the RM model. 

.1. Dynamics of delayed RM model 

In this section, we consider a delayed RM model: 

˙ x = rx 

(
1 − x ( t − τ ) 

K 

)
− αxy 

h + x 
, 

˙ 
 = 

βxy 

h + x 
− my , (17) 

here x ( t ), y ( t ), r , K , α, β , m denotes the same notation as men-

ioned in the previous sections and h stands for half capturing sat-

ration constant. 

The interior equilibrium of the model is 

(x ∗, y ∗) = 

(
mh 

β − m 

, 
hβ

α(β − m ) 

(
r − rmh 

K(β − m ) 

))
, 

rovided β > m and K(β − m ) > mh . 

Linearizing the system near interior equilibrium, we obtain the

haracteristic equation, 

2 + a 1 λ + a 2 λe −λτ + a 3 = 0 , (18)

here 

 1 = − αx ∗y ∗

( h + x ∗) 2 
, 

 2 = 

rx ∗

K 

, 

 3 = 

hαβx ∗y ∗

( h + x ∗) 3 
. 

e are using the same notation for coefficient in the characteristic

quation as mentioned in [20] . Clearly a 2 and a 3 are positive and

 1 is negative. The characteristic equation for τ = 0 becomes 

2 + (a 1 + a 2 ) λ + a 3 = 0 , 

.e. 

= 

−(a 1 + a 2 ) ±
√ 

(a 1 + a 2 ) 2 − 4 a 3 
. 
2 
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The equilibrium of the non-delayed system is asymptotically

stable if a 1 + a 2 > 0 . 

Martin and Ruan [35] and Kar [20] stated that three possible

cases concerning the stability changes due to delay are as follows. 

Result 1 The equilibrium of the system will be asymptotically sta-

ble for all time delay if a 1 + a 2 > 0 and a 2 
1 

− a 2 
2 

− 2 a 3 > 0 .

Result 2 The equilibrium will be asymptotically stable only up to

some time delay, beyond which it will be unstable if a 1 +
a 2 > 0 , a 2 

2 
− a 2 

1 
+ 2 a 3 > 0 and (a 2 

2 
− a 2 

1 
+ 2 a 3 ) 

2 = 4 a 2 
3 
. 

Result 3 The equilibrium will experience delay induced switching

of stabilities if a 1 + a 2 > 0 , a 2 
2 

− a 2 
1 

+ 2 a 3 > 0 and (a 2 
2 

−
a 2 

1 
+ 2 a 3 ) 

2 > 4 a 2 
3 
. 

In fact, the parameter conditions in the above statement are

due to Kar [20] , but Martin and Ruan [35] have proposed the same

conditions with different notations. Martin and Ruan [35] believed

that such a parameter condition is possible in model, where delay

never causes instability. The first result proposed by Kar [20] in RM

model is not observed in our LV type model. Therefore, we would

like to revisit if delay really has an influence to maintain stability

in the RM model. 

To check for the change of dynamics due to time delay, we as-

sume that there exists λ = iω (ω > 0) for some critical τ . Then

the characteristics Eq. (18) , after separating the real and imaginary

parts, can be written as, 

−ω 

2 + ω a 2 sin ( ω τ ) + a 3 = 0 (19a)

a 1 ω + a 2 ω cos ( ωτ ) = 0 . (19b)

Let us define, 

θ1 = arccos 

(
−a 1 

a 2 

)
, 0 < θ1 < 

π

2 

, 

θ2 = arccos 

(
−a 1 

a 2 

)
, 

3 π

2 

< θ2 < 2 π. 

Like in the previous section, accordingly for the choice of θ1 

and θ2 , we get two different values of sin ( ωτ ), and the corre-

sponding values of ω can be given from (19b) as, 

ω + = 

1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 

1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 4 a 3 , (20)

ω − = −1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 

1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 4 a 3 . (21)

Since a 1 < 0 , a 2 > 0 , a 1 + a 2 > 0 (i.e., | a 2 | > | a 1 |), both ω + and

ω − are positive. 

The corresponding τ will be given as, 

τ+ 
n = 

θ1 + 2 nπ

ω + 
, 

τ−
n = 

θ2 + 2 nπ

ω −
. 

Thus, there exist such ω’s for which Hopf-bifurcation occurs

and hence, increasing time delay cannot maintain stability. This ad-

dresses the second major issue we have posed in the Introduction

section. 

Our analysis claims that, the first result does not hold, as men-

tioned in the existing literature, but the second result can be ob-

served in LV type as well as RM model. 

However, we show that the parameter conditions due to Kar

[20] and Martin and Ruan [35] in the second result are sufficient,

but not necessary. It can be seen from the example given below: 

Example 3.1. Let us consider the parameter sets as r = 0 . 8 ,

K = 45 , α = 0 . 7 , β = 0 . 4 , h = 10 , m = 0 . 3 . Then, the given param-

eter sets satisfies the conditions (a 2 − a 2 + 2 a 3 ) 
2 > 4 a 2 including
2 1 3 
emaining ones corresponding to the Result 2. But, the equilibrium

30, 15.23) exhibits stable dynamics when τ < 2.23 and at τ = 2 . 23

approx) Hopf-bifurcation occurs. The system will be unstable for

> 2.23. In fact, transversality condition is satisfied at the critical

ime delay. 

It shows that the condition mentioned in Result 2 is sufficient,

ut not necessary. Importantly, as the above parameters now sat-

sfied the conditions related to the Result 3 and we could have ob-

ained stability switching based on the proposed theory due to Kar

20] , Kar and Pahari [24] and Martin and Ruan [35] , but we simply

bserved a stability change for increasing time delay. Hence, con-

ition for stability switching in [20,24] and [35] (also see [24] ) is

ot true always. 

The condition for the existence of stability switching in LV type

odels is discussed in Theorem 2.2 . Therefore, Theorem 2.2 sug-

ests that an additional parametric condition is required for sta-

ility switching which can be obtained from the inequalities. To

nderstand the stability switching phenomenon in RM model we

resent the following example. 

xample 3.2. We set r = 0 . 25 , K = 10 , α = 1 . 5 , β = 1 . 3 , h = 10

nd m = 0 . 1 . The ecological parameters are chosen in such a way

hat it satisfies the parametric restrictions given in Result 3 includ-

ng τ+ 
1 

> τ−
0 

(additional condition). The condition, τ+ 
1 

> τ−
0 

ensures

he existence of at least one stability switch. The values of τ for

hich bifurcation occurs, are shown as follows. We obtained 2 sta-

ility switching in the unharvested model. 

τ+ 
0 

≈ 3 . 7198 τ−
0 

≈ 40 . 8656 

τ+ 
1 

≈ 45 . 3025 τ−
1 

≈ 85 . 7461 

τ+ 
2 

≈ 86 . 8852 τ−
2 

≈ 130 . 6266 

τ+ 
3 

≈ 128 . 46790 

Therefore, we have improved the delay induced stability results

nd established new parameter condition for the stability switch-

ng compared to the earlier articles. The major observation is that

oth the LV and RM models exhibit similar stability behavior due

o time delay. 

.2. Harvesting results in RM model 

Now we would like to know if the delayed RM model also pro-

uces similar outcomes such a LV type model under harvesting. In

he following subsections, we will study the effect of harvesting in

he dynamics of the RM system by considering a fixed time delay.

n addition, we establish whether maximum harvest from predator

opulations can stabilize the system. 

Our main interest is to explore harvesting results when the un-

arvested system is at non-equilibrium state. Although the non-

elayed RM model can exhibit cyclic dynamics due to Holling type

I functional response and such a system is extensively studied by

hosh et al. [10] . However, if the system is in oscillatory mode

ue to functional response, time delay does not have any role to

hange stability (Follows from Section 3.1 ). Here, we assume that

he unharvested system becomes unstable due to time delay only

nd hence, we need to restrict the ecological parameters accord-

ngly for which non-delay RM model leads a stable equilibrium. 

Before starting the analysis for harvesting, the natural system

ust meet the parametric conditions provided in the Results 2 or

 as described in Section 3.1 . The dynamics of the unharvested

ystem corresponding to the second result is simple and we have

erified that it leads to the similar results obtained from LV type

odel. Thus, we focus our study when the unharvested system ex-

eriences more complex dynamics such as delay induced stability

witching based on the Result 3. 
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Fig. 7. The curves τ = τ±
n (E 1 ) increase in E 1 . Because of increasing nature of τ = 

τ+ 
0 

(E 1 ) , harvesting has a stabilizing effect when the unharvested system involves 

smaller time delay. The results will be significantly different if the time delay is 

comparatively larger. 
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.2.1. Prey harvesting 

The Rosenzweig–MacArthur model with constant time delay T 
n the prey specific growth rate subjected to prey harvesting is

iven as: 

·
x = rx 

(
1 −x ( t −τ ) 

K 

)
− αxy 

h + x 
−E 1 x , 

·
 = 

βxy 

h + x 
−my . (22) 

The interior equilibrium for the system (22) and the corre-

ponding approach to determine the time delays for which Hopf-

ifurcation occurs is similar as in the previous section. Hence, the

etails are given in Appendix A . 

To perform numerical simulations, we use the parameters given

n Example 3.2 . We have already explained that these parameters

how 2 stability switching in the unharvested system. The coexist-

ng equilibrium is computed as (0.833, 1.655), which is asymptoti-

ally stable. The range of employed effort should be (0, 0.2292), in

rder to maintain the persistence of both the populations. 

Likewise previous section, the solid curves and dashed curves,

n Fig. 7 , represents τ = τ+ 
n (E 1 ) and τ = τ−

n (E 1 ) , (n = 0 , 1 , 2 , ... ) , re-

pectively, corresponding to increasing effort. The closed regions

 n , (n = 1 , 2) , are the regions of stability and U n , (n = 1 , 2 , 3) are

he regions of instability. Clearly, τ -axis (i.e. E 1 = 0 ) in Fig. 7 shows

hat stability switching occurs in the unharvested model. 

Similar stability behaviors as that in Lotka–Volterra model was

bserved, which are discussed below. 

(i) For T ∈ (0 , τ+ 
0 

(0)) , the coordinate (E 1 , T ) remains in the

stability region S 1 (region enclosed between the E 1 -axis and

the curve τ = τ+ 
0 

(E 1 ) ) throughout for all effort. 

(ii) For T ∈ (τ+ 
0 

(0) , τ−
0 

(0)) , the coordinate (E 1 , T ) stays in the

instability region U 1 (region enclosed between the curves

τ = τ+ 
0 

(E 1 ) and τ = τ−
0 

(E 1 ) ) initially for some small effort

after which it shifts to the stability region S 1 i.e. the system

can be stabilized by some effort and thus harvesting have a

stabilizing effect on the system. 

(iii) For T ∈ (τ−
0 

(0) , τ+ 
1 

(0) , the system experiences stability

switching with increasing effort as can be seen by the shift-

ing of the coordinate (E 1 , T ) from regions S 2 (region en-

closed between the curve τ = τ−
0 

(E 1 ) and τ = τ+ 
1 

(E 1 ) ) to U 1 

and then from U to S in Fig. 7 . 
1 1 
(iv) For T ∈ (τmax , τ
−
1 

(0)) , the coordinate (E 1 , T ) experiences in-

stability switching with effort, as can be seen from the shift-

ing of the coordinate (E 1 , T ) from the instability regions

U 2 (region enclosed between τ = τ+ 
1 

(E 1 ) and τ = τ−
1 

(E 1 ) )

to stability region S 2 and again from S 2 to instability region

U 1 , where τmax = lim E 1 → E ∗ τ+ 
0 

(E 1 ) ) , E 
∗ = 

r 
q (1 − mh 

K(β−m ) 
) and

τ−
1 

(E 1 ) is the dashed curve succeeding τ+ 
1 

(E 1 ) . 

.2.2. Predator harvesting 

The Rosenzweig–MacArthur model with constant time delay T 
n the prey specific growth rate under predator harvesting is given

s: 

·
x = rx 

(
1 −x ( t −τ ) 

K 

)
− αxy 

h + x 
, 

·
 = 

βxy 

h + x 
−my −E 2 y . (23) 

The interior equilibrium for the system (23) and the cor-

esponding process to find the time delays for which Hopf-

ifurcation occur is similar as in the previous section and is given

n Appendix B . 

We rely on numerical simulations to observe the different dy-

amical natures that occurs due to different range of time delays

ncorporated in the model under prey harvesting. 

We will be considering two cases. First will be the case without

witching and second will be the case of switching. 

Case I: When the unharvested system does not experience de-

ay induced stability switching 

Taking the same parameter set as in Example 3.1 , we determine

he range of the effort under predator harvesting as (0, 0.0273).

he unharvested system does not experience any switching of

tability, as can be seen from Example 3.1 . For τ < 2.23, the unhar-

ested system is stable but for τ > 2.23, it is unstable and Hopf-

ifurcation occurs at τ = 2 . 23 . In Fig. 8 , we have drawn τ+ 
0 

(E 2 )

hich creates the region of stability and instability. The curve is

ecreasing in effort. It leads that the unharvested stable system

an be destabilize under harvesting. On the other hand, the sys-

em remains unstable under harvesting if the unharvested sys-

em is unstable. Although, Kar and Pahari [24] concluded it by

aking two distinct efforts numerically, we have now shown a

omplete picture for whole range of effort. Now we focus in the
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Fig. 9. Different regions are depicted to describe the stability nature by plotting the curves τ = τ±
n (E 2 ) . The curve τ = τ+ 

0 
(E 2 ) is increasing in nature and hence, a stable 

pre-harvested system incorporating smaller time delay maintains its stability under any level of harvesting effort. 
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second case where some different results will hold for predator

harvesting. 

Case II: When the unharvested system experiences delay in-

duced stability switching 

We obtain the effort range for predator harvesting as (0, 0.55),

when we set the ecological parameters given in Example 3.2 . In the

Fig. 9 , the solid curves and dashed curves represents τ = τ+ 
n (E 2 )

and τ = τ−
n (E 2 ) , (n = 0 , 1 , 2 , ... ) respectively, corresponding to in-

creasing harvesting effort. The considered parameters established

the stability switching phenomenon in the unharvested case which

can be seen from τ -axis (i.e. E 2 = 0 ). The region enclosed between

the E 2 -axis and the first solid curve is the region of stability. The

region enclosed by any solid curve and succeeding dashed curve is

the region of instability. The region bounded by any dashed curve

and succeeding solid curve above is the region of stability until in-

tersection takes place between these two curves for increasing ef-

fort. After the intersection there will be simultaneous appearance

of two solid curves. These consecutive appearance of two solid

curves results in instability regions between the curves as well as

regions above the curves for that particular range of E 2 . 

Few of the stability behaviors that can be observed based on

the chosen value of T for the system (23) is given as follows. 

(i) For T = 1 , the coordinate (E 2 , T ) remains in the stable re-

gion S 1 throughout. Thus harvesting have no destabilizing

effect on the system. 

(ii) For T ∈ (10 , 20) , the unharvested system will be unstable

and no amount of harvesting can stabilize the system (anal-

ysis follows from the unstable region U 1 ). 

(iii) For T = 42 , the coordinate (E 2 , T ) shifts from region of sta-

bility S 2 to regions U 2 and U 3 , both of which are region of

instability. Hence harvesting have a destabilizing effect on

the system. 

(iv) For T = 35 , unharvested system is unstable. But increasing

effort of harvesting can induce instability switching. 

3.2.3. Maximum sustainable yield and stability 

When predator populations are exploited, the effort does not

exceed (βK/ (K + h ) − m ) for coexistence of populations. The yield
t equilibrium is given as: 

 ( E 2 ) = E 2 y 
∗ = 

E 2 h β

α( β − m − E 2 ) 

(
r − rh ( m + E 2 ) 

K ( β − m − E 2 ) 

)
. 

The maximum yield is obtained at equilibrium when 

 2 = E MSY 
2 = 

(β − m )(K(β − m ) − hm ) 

(K(β − m ) − hm + 2 hβ) 
. 

Corresponding to the Fig. 9 , the range of effort f or which both

pecies coexist is (0, 0.55). In this case, E MSY 
2 

= 0 . 3568 . Unlike the

ase of LV type model, E MSY 
2 

in RM model does not lie at the

iddle of the effort range. We now recall the Fig. 9 and draw

 2 = E MSY 
2 

(see Fig. 10 ). It is a vertical line and crosses many sta-

ility and instability regions. It is clear that, when time delay is

ery small (for instance, T = 1 ) in the unharvested system, the

quilibrium is stable. Therefore, Fig. 10 reveals that harvesting the

redator towards MSY maintains stability (corresponds to the re-

ion S ). Similarly, if the time delay T = 43 , the equilibrium of the
1 
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nharvested system is asymptotically stable. But harvesting at MSY

evel does not stabilize the system. If the time delay in the unhar-

ested system is slightly greater than τ+ 
0 

, then the system is un-

table. In this case, harvesting the predator towards MSY induces

tability in the system (because, the curve τ = τ+ 
0 

(E 2 ) increases).

therwise, simulations demonstrates that the system towards MSY

annot be stabilized if the unharvested system is unstable due to

ime delay. 

. Discussion and conclusion 

In this paper, we have analyzed both the LV type and RM

redator-prey models incorporating time delay in the logistic

rowth function. First, we have explained the dynamics of the un-

arvested systems due to delay. As the time delay does not change

n fast time scale compared to the change in harvesting effort, we

x time delay as constant when effort is exerted. Delay induced

tability is investigated in both the models by many researchers

17,20,24,35,4 8,4 9] , but we have observed some new results.

artin and Ruan [35] presented three different stability results

ue to time delay in a generalized Gause-type predator-prey model

see Section 3.1 in this article). However, only the occurrence of

tability switching phenomenon is investigated by Ho and Ou [17] ,

oaha and Hassan [48] and Toaha et al. [49] . We have proved

hat time delay can induce instability, for some critical value, and

he instability persists if the delay exceeds the critical threshold.

ence, stability switching is not the only phenomenon in LV type

nd RM models. In addition, we observed that time delay certainly

auses instability in LV type system. However, Martin and Ruan

35] and Kar and Pahari [24] proved that there exists paramet-

ic condition, for which, time delay does not change the asymp-

otic stability behavior of the coexisting equilibrium. Here, we have

hown that such a parameter condition is not possible in RM

odel, for which steady state remain stable for increasing time de-

ay. Likewise, the LV model, RM model also experiences instability

or some critical value and the coexisting equilibrium stays unsta-

le for larger time delay. Therefore, we can now suggest that both

he models have qualitatively similar dynamics under time delay. 

It is customary that ecologists always propose simple mod-

ls and drive more general results which can be consistent with

ore complex models. For example, Legovi ́c et al. [29] studied

nly LV type predator-prey system and established the extinction

f population at MSY level in more complex and multi-species food

hain. Recently, Pilyugin [42] examined the variation of popula-

ion biomass due to protected area by considering a LV model to

ddress the impact of marine reserve in more general sense. Al-

hough, LV and LV type models are sometimes criticized because of

ts simplicity, but they can drive many ecological theories. Hence,

t was important for us to prove that the delay induced dynam-

cs are similar for both LV type and RM models, so as to verify

hether generalized harvesting results can be obtained for both

he models. However, we conclude from the following discussion

hat many of the harvesting results are similar in both the LV type

nd RM models. 

It is generally accepted that, harvesting stabilize a system when

he unharvested system is at non-equilibrium state [27] due to

onlinear functional response. Numerical simulations reveals that

arvesting the prey or predator can destroy oscillation in a system

nder additional food [22] . In fact, Ghosh et al. [10] and Tromeur

nd Loeuille [51] established the fact that prey and predator har-

esting can stabilize a non-equilibrium dynamics in non-delayed

osenzweig–MacArthur predator-prey system. If the equilibrium of

he unharvested system stay stable, then harvesting does not have

ny influence to destabilize it. On the other hand, Martin and Ruan

35] showed that harvesting the prey population can stabilize a

ystem if the unharvested system is in non equilibrium state due
o time delay. Kar and Ghorai [21] and Meng et al. [38] have ob-

erved that prey harvesting stabilized a system when the unhar-

ested system is at unstable state. In our LV type model, we found

hat prey harvesting can have several impacts depending upon de-

ay induced dynamic mode of the unharvested system. 

(i) Harvesting does not have any influence to destabilize when

the unharvested system is stable due to smaller time delay

(See Fig. 1 ). 

(ii) If an unharvested is at unstable mode due to moderate size

of time delay, larger harvesting effort can stabilize the sys-

tem (See Fig. 1 ). 

(iii) If the time delay is larger and unharvested system is unsta-

ble, then it may not be stabilized by harvesting (See Fig. 1 ). 

(iv) If the unharvested system for a fixed time delay is stable,

harvesting can induce stability switching (See Fig. 2 ). 

(v) If the unharvested system for a fixed time delay is unstable,

harvesting can induce instability switching (See Fig. 2 ). 

Some of the above results are proved to be consistent for de-

ayed RM model under complex parameter setting, and the rest are

erified (not shown in the paper) in simple parameter condition. It

s probably believed that, prey harvesting causes stability if unhar-

ested system is unstable due to functional response [10,13,51] or

ue to time delay [21,35,38] . Of course, Meng et al. [38] have stud-

ed Beddington-DeAngelis model with delay dependent coefficient,

hereas our models are different from [38] . However, our results

how that many other phenomenon may be exhibited based on the

ynamics of unharvested system and particular model selection. In

his context, our investigation is attractive. 

In the context of predator harvesting, we would like to men-

ion Kar and Ghorai [21] and Meng et al.’s [38] contribution. These

re the only two research groups who have observed that preda-

or harvesting stabilize a system when the unharvested system is

t unstable mode. In our LV type model, we found the following

esults: 

(i) Harvesting does not have any influence to destabilize when

the unharvested system is stable system due to smaller time

delay (See Figs. 3 and 4 ). Such a result is also true for prey

harvesting. 

(ii) If an unharvested is at stable mode due to moderate size

of time delay, larger harvesting effort induce instability (See

Fig. 3 ). This does not happen in the case of prey harvesting. 

(iii) If a system is at stable mode prior to harvesting, harvesting

the predator can induce stability switching (see Fig. 4 ). 

(iv) If the time delay is large enough and unharvested system

is unstable, then it may not be stabilize by harvesting (See

Figs. 3–5 ). 

(v) Likewise the prey harvesting, predator harvesting can pro-

duce stability switching (See Fig. 5 ). 

(vi) If the unharvested system for a fixed time delay is unstable,

the harvested system can experiences instability switching

for increasing effort (See Fig. 5 ). We would like to remind

that instability switching is identified in a non-delayed tri-

trophic food chain when top-predator is exploited [13] . 

It is observed that prey and predator harvesting do not pro-

uce same results. Some of the above results for predator har-

esting in LV type model are same with the RM model. However,

e could not identify the stability and instability switching phe-

omenon when predator is exploited in RM model (see Fig. 9 ). Our

nvestigation leads to new outcomes compared to the existing ob-

ervations by Meng et al. [38] and Kar and Ghorai [21] . 

Readers might think that harvesting results can be derived by

ust varying the time delay with a fixed effort. As we mentioned

hat harvested systems are analyzed by some researchers using
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this approach (for instance, [39] ), one might think that harvest-

ing induced stability switching happens because of delay induced

stability switching. Thus, there is no need to examine the explicit

impact of harvesting. Only delay induced dynamics is sufficient to

know the harvesting effects. However, such concept may go wrong.

In the RM model, we observed that the unharvested system expe-

riences stability switching due to delay, but harvesting does not

show any stability switching (see Fig. 9 ). Therefore, it was essen-

tial to know the explicit harvesting results as we have performed. 

One might think about the impact of harvesting on both the

species using combined effort. In fact, such approach is more real-

istic in fishery as a non-target species might be caught along with

the target species. Although we have not paid attention by harvest-

ing both the species, but we can infer the scenario from the indi-

vidual prey and predator harvesting results. If the target species

under combined effort is the prey (resp. predator), then the re-

sults will more likely to be coherent with the prey (resp. predator)

harvesting case. We acknowledge Toaha et al. [49] for discussing

a result based on combined effort. They mentioned that LV type

harvested system becomes stable for a range of effort, then it be-

comes unstable and finally it regains stability for increasing effort

(See Example 3.1 in their paper). Hence as per their description

an stability switching occurs. Unfortunately, the unharvested sys-

tem was unstable for τ = 1 . 8 . We have verified that an instability

switching occurs in this case. 

In a fishery, harvesting limit should reach at most MSY level for

sustainability. The estimation for this MSY is quite easy in theo-

retical model when the harvested system is a steady state [8,9,29] .

However, when the harvested system is at non-equilibrium state,

it is quite challenging to measure the MSY [13] . In this case, stock

or yield can be computed by time-averaged concept [36] . Perhaps,

[10] is the first to prove that a non-delayed RM predator-prey sys-

tem produces a stable stock at MSY (predator harvesting) regard-

less the dynamics of the unharvested system. In this view point

and considering the research question proposed by Martin and

Ruan [35] , we examined the system dynamics when predator is ex-

ploited towards maximum yield. Based on LV type and RM model

incorporating time delay reveals that: 

(i) The system must produces stable stock at MSY level if the

unharvested system is stable incorporating smaller time de-

lay. 

(ii) The system may not yield stable stock towards MSY if the

unharvested system is stable with comparatively larger time

delay. 

(iii) The system is more likely to induce unstable stock to achieve

MSY if the unharvested system is unstable due to time delay.

Hence, we are able to address the proposed work due to Mar-

tin and Ruan [35] . In the same time, we can claim that the rule

established by Ghosh et al. [10] is not generic if the populations

dynamics models may have very different types of non-equilibrium

states. 

The strength of these works are that (i) we have studied the

harvesting impact in more systematic way and discussed all the

possible phenomenon and (ii) we have explicitly derived many an-

alytical condition on effort. However, we cannot claim that the

above results always hold for any general predator-prey system in-

cluding longer food chain. Outcomes might be slightly different for

different models considered, but some of our results might be still

valid. On the other hand, it might not be applicable directly to

explain a specific case study as every case study must need very

specific model as well. However, our discussion must contribute

to enhance knowledge in explaining general results in theoretical

and applied ecology. It would be interesting to study some widely

different models with the same research theme for verifying our

established results. In particular, we can examine whether stability
witching phenomenon is possible due to harvesting in the model

tudied by Meng et al. [38] where one of the model coefficients

epends on time delay. 
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ppendix A. Stability analysis for prey harvesting in RM model 

The interior equilibrium of the model (22) is 

(x ∗, y ∗) = 

(
mh 

β − m 

, 
hβ

α(β − m ) 

(
r − rmh 

K(β − m ) 
− E 1 

))
. 

The effort of harvesting for the existence of positive equilibrium

ust satisfy 

 < E 1 < r 

(
1 − mh 

K(β − m ) 

)
. (24)

Linearizing the system near interior equilibrium, we get the

haracteristics equation, 

2 + a 1 λ + a 2 λe −λτ + a 3 = 0 , (25)

here 

 1 = − αx ∗y ∗

( h + x ∗) 2 
= − m 

β

(
r − rmh 

K ( β − m ) 
− E 1 

)
, 

 2 = 

rx ∗

K 

= 

rmh 

K ( β − m ) 
, 

 3 = 

h αβx ∗y ∗

( h + x ∗) 3 
= 

m 

β
( β − m ) 

(
r − rmh 

K ( β − m ) 
− E 1 

)
. 

Instead of distinct notations, we use the same notations used

n Section 3.1 . However, we have to remember that notations/ ex-

ressions depends on effort. 

We have already checked for the stability of the system in non-

elayed (τ = 0) and non-harvested case in Section 3.1 . 

Now for τ � = 0, let us suppose there exist λ = iω (ω > 0) . The

haracteristics Eq. (25) can be written as, (separating the real and

maginary parts) 

ω 

2 + ω a 2 sin (ω τ ) + a 3 = 0 , (26a)

 1 ω + a 2 ω cos ( ωτ ) = 0 . (26b)

Let us define, 

1 = arccos 

(
−a 1 

a 2 

)
, 0 < θ1 < 

π

2 
, 

2 = arccos 

(
−a 1 

a 2 

)
, 
3 π

2 
< θ2 < 2 π. 

Accordingly, for the choice of θ1 and θ2 , we get two positive

alues of ω given as, 

 + (E 1 ) = 

1 

√ 

a 2 
2 

− a 2 
1 

+ 

1 

√ 

a 2 
2 

− a 2 
1 

+ 4 a 3 , (27)
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 −(E 1 ) = −1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 

1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 4 a 3 . (28) 

rovided a 2 
2 

− a 2 
1 

+ 2 a 3 > 0 and (a 2 
2 

− a 2 
1 

+ 2 a 3 ) > 4 a 2 
3 
. The corre-

ponding τ will be given as, 

+ 
n (E 1 ) = 

θ1 + 2 nπ

ω + 
, 

−
n (E 1 ) = 

θ2 + 2 nπ

ω −
. 

We get different set of values of τ±
n (E 1 ) based on the different

ffort of harvesting E 1 . 

ppendix B. Stability analysis for predator harvesting in RM 

odel 

The interior equilibrium of the model (23) is 

(x ∗, y ∗) = 

(
h (m + E 2 ) 

β − m − E 2 
, 

hβ

α(β − m − E 2 ) 

(
r − rh (m + E 2 ) 

K(β − m − E 2 ) 

))
. 

The effort of harvesting for the existence of positive equilibrium

hould be in the range 

 < E 2 < β
(

K 

K + h 

)
− m. (29)

Linearizing the system near interior equilibrium, we get the

haracteristics equation, 

2 + a 1 λ + a 2 λe −λτ + a 3 = 0 , (30)

here 

 1 = − αx ∗y ∗

( h + x ∗) 2 
= −

(
m + E 2 

β

)(
r − r ( m + E 2 ) h 

K ( β − m − E 2 ) 

)
, 

 2 = 

rx ∗

K 

= 

r ( m + E 2 ) h 

K ( β − m − E 2 ) 
, 

 3 = 

h αβx ∗y ∗

( h + x ∗) 3 
= 

(
m + E 2 

β

)
( β − m − E 2 ) 

(
r − r ( m + E 2 ) h 

K ( β − m − E 2 ) 

)
. 

Since we have already attempted to attain stability in the sys-

em under unharvested and non-delayed case ( Section 3.1 ), here,

e deal with the delayed and harvested case. 

Now for τ � = 0, let us suppose there exist λ = iω (ω > 0) . The

haracteristics Eq. (30) can be written as, (separating the real and

maginary parts) 

ω 

2 + ω a 2 sin (ω τ ) + a 3 = 0 , (31a) 

 1 ω + a 2 ω cos (ωτ ) = 0 . (31b) 

Let us define, 

1 = arccos 

(
−a 1 

a 2 

)
, 0 < θ1 < 

π

2 

, 

2 = arccos 

(
−a 1 

a 2 

)
, 

3 π

2 

< θ2 < 2 π. 

Accordingly, for the choice of θ1 and θ2 , we get two positive

alues of ω given as, 

 + = 

1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 

1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 4 a 3 , (32) 

 − = −1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 

1 

2 

√ 

a 2 
2 

− a 2 
1 

+ 4 a 3 . (33) 

rovided a 2 2 − a 2 1 + 2 a 3 > 0 and (a 2 2 − a 2 1 + 2 a 3 ) > 4 a 2 3 . The corre-

ponding τ will be given as, 

+ 
n = 

θ1 + 2 nπ

ω + 
, 
−
n = 

θ2 + 2 nπ

ω −
. 

We get different set of values of τ±
n based on the different effort

f harvesting E 2 . 
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