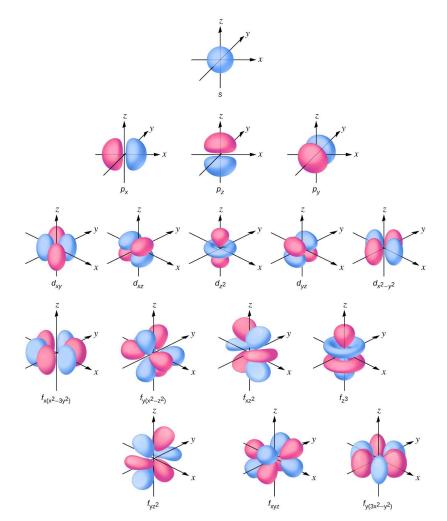

Schrodinger Wave Equation for H atom

$$-\left[\frac{h^2}{8\pi^2 m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) - \frac{e^2}{4\pi\epsilon_0 r}\right]\Psi(x, y, z) = E\Psi(x, y, z)$$


$$\left\{-rac{\hbar^2}{2\mu r^2}\left[rac{\partial}{\partial r}\left(r^2rac{\partial}{\partial r}
ight)+rac{1}{\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial}{\partial heta}
ight)+rac{1}{\sin^2 heta}rac{\partial^2}{\partialarphi^2}
ight]-rac{e^2}{4\pi\epsilon_0 r}
ight\}\psi(r, heta,arphi)=E\psi(r, heta,arphi)$$

 $\psi(r, heta,arphi)=R(r)Y(heta,arphi)$

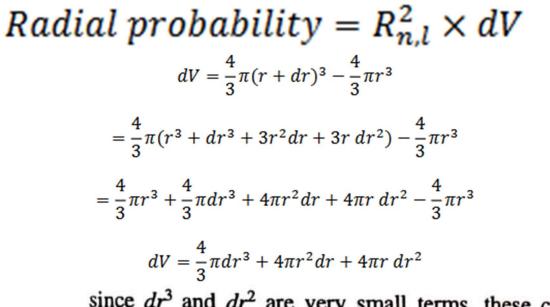
Quantum numbers

n	l	m	ms	Number of orbitals	Orbital Name	Number of electrons	Total Electrons
l (K shell)	0	0	1/2 - 1/2	1	1 <i>s</i>	2	2
2 (L Shell)	0	0	1/2 - 1/2	1	2 <i>s</i>	2	8
	1	-1, 0, +1	1/2 - 1/2	3	2p	6	
3 (M- shell)	0	0	1/2 - 1/2	1	3s	2	18
	1	-1, 0, +1	1/2 - 1/2	3	3р	6	
	2	-2, -1, 0, +1, +2	1/2 - 1/2	5	3 <i>d</i>	10	
4 (L-shell)	0	0	1/2 - 1/2	1	4 <i>s</i>	2	32
	1	-1, 0, +1	1/2 - 1/2	3	4 <i>p</i>	6	
	2	-2, -1, 0, +1, +2	1/2 - 1/2	5	4 <i>d</i>	10	
	3	-3, -2, -1, 0, +1, +2, +3	1/2 - 1/2	7	4 <i>f</i>	14	

and the state of the

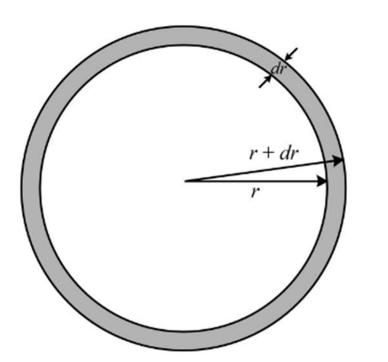
$$\psi_{n,l,m_l}(r,\theta,\phi) = R_{n,l}(r)Y_{l,m_l}(\theta,\phi)$$

Radial and angular wavefunctions

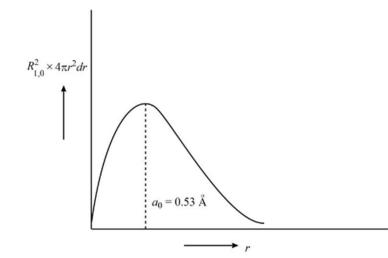

$$\psi_{n,l,m_l}(r,\theta,\phi) = R_{n,l}(r)Y_{l,m_l}(\theta,\phi)$$

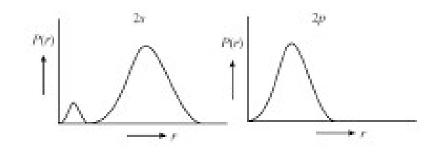
Angular Wave Function Y_{l,m_l} for l = 0, 1 $R_{10}(r) = \frac{2}{\sqrt{a_0^3}} e^{-r/a_0}, \qquad R_{20}(r) = \frac{1}{2\sqrt{2}\sqrt{a_0^3}} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$ $R_{21}(r) = \frac{1}{2\sqrt{6}\sqrt{a_0^3}} \frac{r}{a_0} e^{-r/2a_0}$ $R_{30}(r) = \frac{1}{81\sqrt{3}\sqrt{a_0^3}} \left(27 - 18\frac{r}{a_0} + 2\frac{r^2}{a_0^2}\right) e^{-r/3a_0}$ $R_{31}(r) = \frac{4}{81\sqrt{6}\sqrt{a_0^3}} \left(6 - \frac{r}{a_0} \right) \frac{r}{a_0} e^{-r/3a_0}, \quad R_{32}(r) = \frac{4}{81\sqrt{30}\sqrt{a_0^3}} \frac{r^2}{a_0^2} e^{-r/3a_0}$

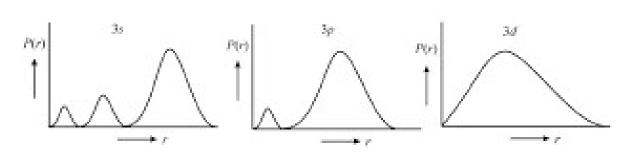
 Ψ^* = a -ib

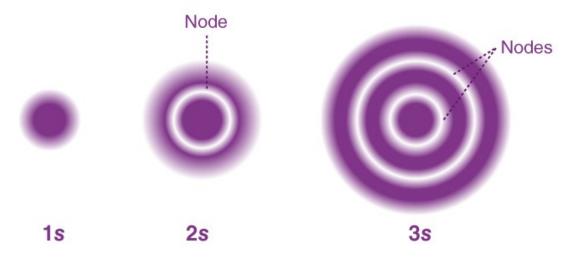

 $|\Psi|^2$ or $\Psi\Psi^*$ is proportional to the probability of finding a particle at a given time

 $P \propto \Psi \Psi^* dxdydz = \Psi \Psi^* \partial V$




since dr^3 and dr^2 are very small terms, these can be supposed to be equal to zero and hence the above equation becomes.

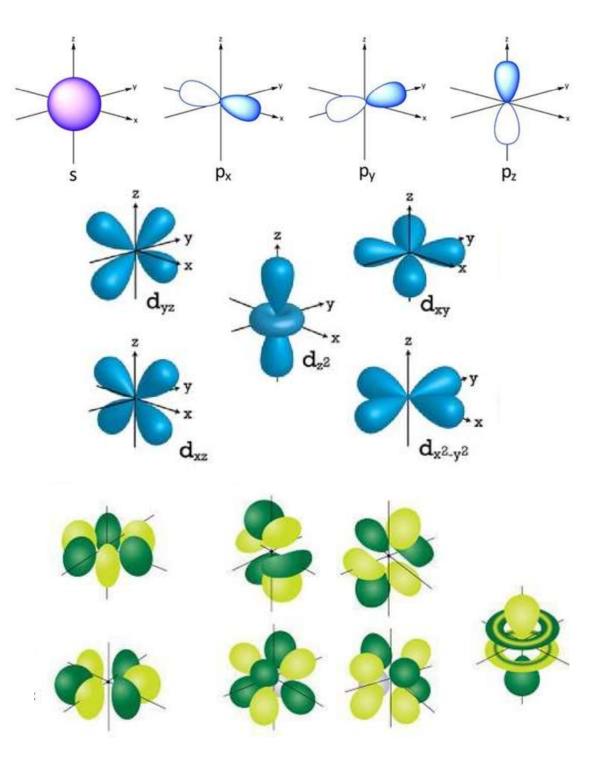

Radial probability of finding the electron within the small radial shell of thickness of dr= $R_{n,l}^2 \times dv = R_{n,l}^2 \times 4\pi r^2 dr$

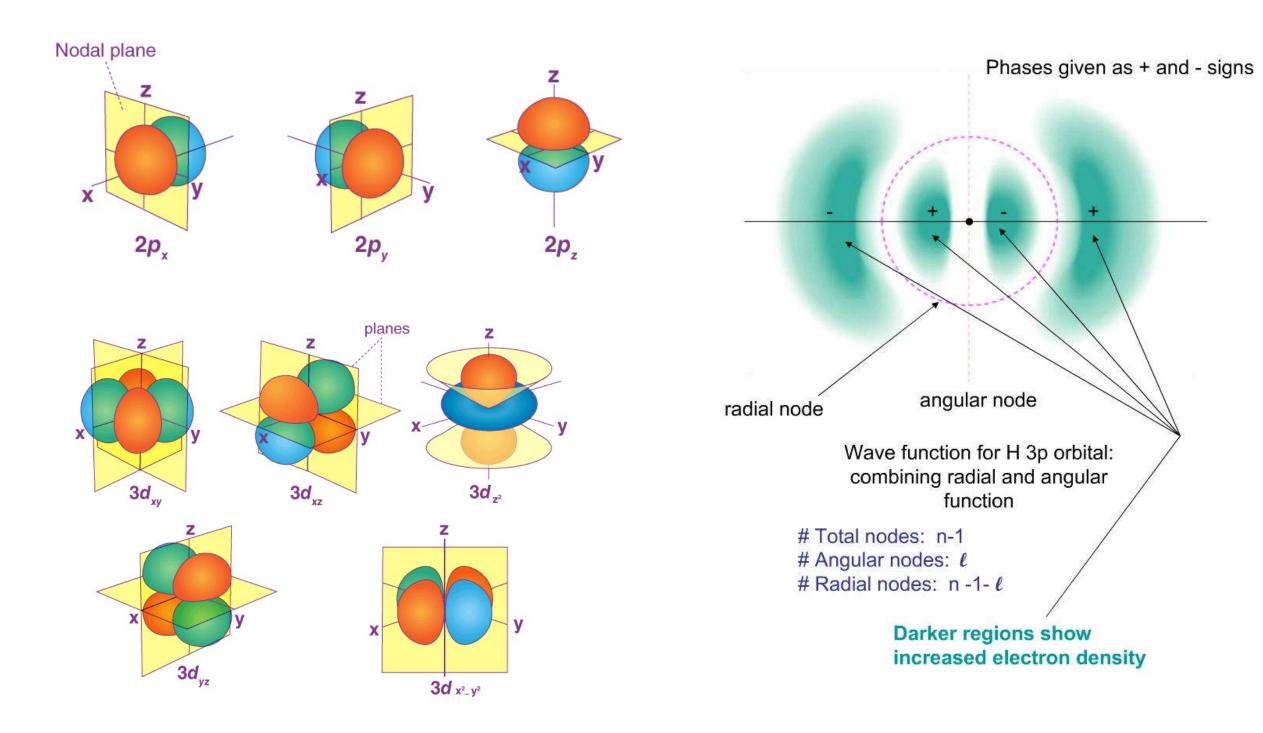

Radial Probability Distribution

$$\begin{aligned} R_{10}(r) &= \frac{2}{\sqrt{a_0^3}} e^{-r/a_0}, \qquad R_{20}(r). = \frac{1}{2\sqrt{2}\sqrt{a_0^3}} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0} \\ R_{21}(r) &= \frac{1}{2\sqrt{6}\sqrt{a_0^3}} \frac{r}{a_0} e^{-r/2a_0} \\ R_{30}(r) &= \frac{1}{81\sqrt{3}\sqrt{a_0^3}} \left(27 - 18\frac{r}{a_0} + 2\frac{r^2}{a_0^2}\right) e^{-r/3a_0} \\ R_{31}(r) &= \frac{4}{81\sqrt{6}\sqrt{a_0^3}} \left(6 - \frac{r}{a_0}\right) \frac{r}{a_0} e^{-r/3a_0}, \quad R_{32}(r) = \frac{4}{81\sqrt{30}\sqrt{a_0^3}} \frac{r^2}{a_0^2} e^{-r/3a_0} \end{aligned}$$

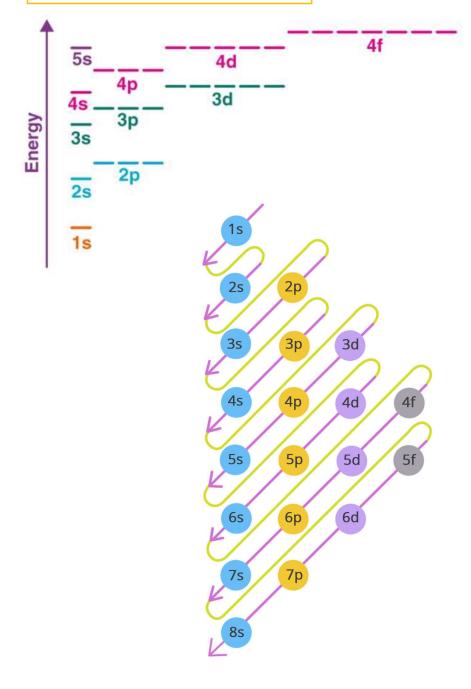
$$n \ \ell \ m_{\ell} \qquad \Psi_{n\ell m_{\ell}}(r,\theta,\varphi)$$

$$3 \ 0 \ 0 \ 3s \qquad \frac{1}{81\sqrt{3\pi}a_{0}^{3/2}} \left[27 - 18\frac{r}{a_{0}} + 2\frac{r^{2}}{a_{0}^{2}} \right] e^{-r/3}$$


$$3 \ 1 \ 0 \ 3p \qquad \frac{\sqrt{2}}{81\sqrt{\pi}a_{0}^{3/2}} \left[6 - \frac{r}{a_{0}} \right] \frac{r}{a_{0}} e^{-r/3a_{0}} \cos\theta$$

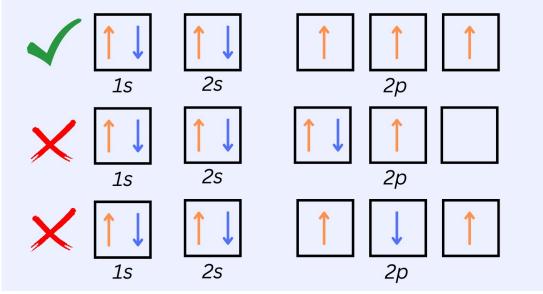

$$3 \ 1 \ \pm 1 \ 3p \qquad \frac{1}{81\sqrt{\pi}a_{0}^{3/2}} \left[6 - \frac{r}{a_{0}} \right] \frac{r}{a_{0}} e^{-r/3a_{0}} \sin\theta e^{+i\phi}$$

$$3 \ 2 \ 0 \ 3d \qquad \frac{1}{81\sqrt{\pi}a_{0}^{3/2}} \frac{r^{2}}{a_{0}^{2}} e^{-r/3a_{0}} (3\cos^{2}\theta - 1)$$

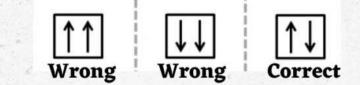

$$3 \ 2 \ \pm 1 \ 3d \qquad \frac{1}{81\sqrt{\pi}a_{0}^{3/2}} \frac{r^{2}}{a_{0}^{2}} e^{-r/3a_{0}} \sin\theta \cos\theta e^{+i\phi}$$

$$3 \ 2 \ \pm 2 \ 3d \qquad \frac{1}{162\sqrt{\pi}a_{0}^{3/2}} \frac{r^{2}}{a_{0}^{2}} e^{-r/3a_{0}} \sin^{2}\theta e^{+i2\phi}$$

Aufbau's principle

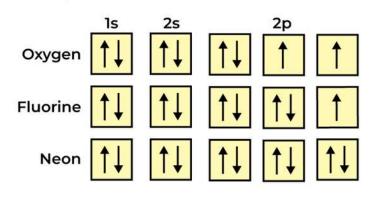

Element	Electron Configuration	Element	Electron Configuration
Н	1s ¹	Na	1s ² 2s ² 2p ⁶ 3s ¹
He	1s ²	Mg	1s ² 2s ² 2p ⁶ 3s ²
Li	1s ² 2s ¹	Al	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
Be	1s ² 2s ²	Si	1s ² 2s ² 2p ⁶ 3s ² 3p ²
В	1s ² 2s ² 2p ¹	Р	1s ² 2s ² 2p ⁶ 3s ² 3p ³
С	1s ² 2s ² 2p ²	S	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴
N	1s ² 2s ² 2p ³	Cl	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
0	1s ² 2s ² 2p ⁴	Ar	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
F	1s ² 2s ² 2p ⁵	К	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹
Ne	1s ² 2s ² 2p ⁶	Ca	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²

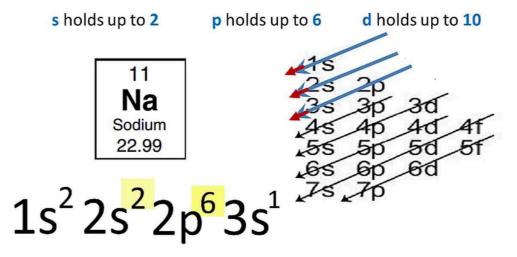
Hund's Rule


Hund's rule states that:

- □ Every orbital in a sublevel is singly occupied before any orbital is doubly occupied.
- □ All of the electrons in singly occupied orbitals have the same spin (to maximize total spin).

Electrons fill a subshell singly before forming any pairs and each electron in a single occupied orbital has the same spin.


Pauli's exclusion principle


According to the Pauli Exclusion Principle, two electrons within an atom can't possess identical sets of four electronic quantum numbers.

Pauli Exclusion Principle

Examples

Electron Configuration Chart

Electron	n		m 0	s 1/2
1s 1 ^{st Electron}	1	0		
1s 2 ^{nd Electron}	1	0	0	- 1/2
2s 1 ^{st Electron}	2	0	0	1/ 2
2s 2 ^{nd Electron}	2	0	0	- 1/2
2p 1 ^{st Electron}	2	1	-1	1/2
2p 2 ^{nd Electron}	2	1	0	1/2
2p 3rd Electron	2	1	1	1/ 2
2p 4th Electron	2	1	-1	- 1/2
2p 5 ^{th Electron}	2	1	0	- 1/2
2p 6 ^{th Electron}	2	1	1	- 1/2
3s 1 ^{st Electron}	3	0	0	1/2