Physical properties		Operators	
Name of Operator	Observables	Operators	Symbols
Position	Position with x coordinate	x	x
Momentum	x component of momentum	$-i \hbar . \partial / \partial \mathrm{x}$	p_{x}
Angular momentum	z component of angular momentum	$-i \hbar . \partial / \partial \Phi$	L_{z}
K.E operator	Kinetic energy	$-\hbar^{2} / 2 \mathrm{~m} . \partial / \partial \mathrm{x}$	T
P.E operator	Potential energy	$\mathrm{V}(\mathrm{x})$	$\hat{\mathrm{V}}$
Total energy (E)	Hamiltonian operator (Time-Independent)	$-\hbar^{2} / 2 \mathrm{~m} . \partial / \partial \mathrm{x}+\mathrm{V}(\mathrm{x})$	$\hat{\mathrm{H}}$
Total energy (E)	Hamiltonian operator (Time-dependent)	$-i \hbar . \partial / \partial \mathrm{t}$	V

Addition and Subtraction of Operators

$$
\begin{aligned}
& (\hat{A}+\hat{B}) f(x)=\hat{A} f(x)+\hat{B} f(x) \\
& (\hat{A}-\hat{B}) f(x)=\hat{A} f(x)-\hat{B} f(x)
\end{aligned}
$$

Products of Operators

$$
\hat{A} \hat{B} f(x)=\hat{A}\{\hat{B} f(x)\}
$$

In general, $\hat{A} \hat{B} f(x) \neq \hat{B} \hat{A} f(x)$

Let us consider, $\hat{A}=x$ and $\hat{B}=\frac{\mathrm{d}}{\mathrm{d} x}$

$$
f(x)=3 x^{2}
$$

$$
\begin{aligned}
(\hat{A}+\hat{B}) f(x) & =\left(x+\frac{d}{d x}\right) 3 x^{2} \\
& =x \times 3 x^{2}+\frac{\mathrm{d}}{\mathrm{~d} x}\left(3 x^{2}\right) \\
& =3 x^{3}+6 x
\end{aligned}
$$

$$
\begin{aligned}
& \hat{A} \hat{B} f(x)=x \times \frac{\mathrm{d}}{\mathrm{~d} x} 3 x^{2}=x \times 6 x=6 x^{2} \\
& \hat{B} \hat{A} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \times 3 x^{2}\right)=\frac{\mathrm{d}}{\mathrm{~d} x} 3 x^{3}=9 x^{2}
\end{aligned}
$$

Commutators

If two operators commute then,

$$
\dot{\hat{A} \hat{B} f(x)=\hat{B} \hat{A} f(x), ~)}
$$

$$
[\hat{A} \hat{B}] f(x)=(\hat{A} \hat{B}-\hat{B} \hat{A}) f(x)=0
$$

Commutator, $[\hat{A} \hat{B}]=(\hat{A} \hat{B}-\hat{B} \hat{A})$

In the previous example,

$$
\begin{aligned}
& \hat{A} \hat{B} f(x)=x \times \frac{\mathrm{d}}{\mathrm{~d} x} 3 x^{2}=x \times 6 x=6 x^{2} \\
& \hat{B} \hat{A} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \times 3 x^{2}\right)=\frac{\mathrm{d}}{\mathrm{~d} x} 3 x^{3}=9 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& {[\hat{A} \hat{B}] f(x)=(\hat{A} \hat{B}-\hat{B} \hat{A}) f(x)=6 x^{2}-9 x^{2}=3 x^{2}=f(x) } \\
\Rightarrow & {[\hat{A} \hat{B}] f(x)=f(x) } \\
\Rightarrow & {[\hat{A} \hat{B}]=1 }
\end{aligned}
$$

Example 3.1. Find the commutators of each of the following pairs of operators

$$
\begin{aligned}
& \text { (a) } \frac{d^{2}}{d x^{2}}, x \frac{d}{d x} \\
& \text { (b) } x^{3}, \frac{d}{d x} \\
& \text { (a) }\left[\frac{d^{2}}{d x^{2}}, x \frac{d}{d x}\right] f(x)=\frac{d^{2}}{d x^{2}}\left(x \frac{d}{d x}\right) f(x)-\left(x \frac{d}{d x}\right)\left(\frac{d^{2}}{d x^{2}}\right) f(x) \\
& =\frac{d}{d x}\left(\frac{d}{d x}+x \frac{d^{2}}{d x^{2}}\right) f(x)-x \frac{d}{d x}\left(\frac{d^{2}}{d x^{2}}\right) f(x) \\
& =\left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d x^{2}}+2 x \frac{d^{3}}{d x^{3}}\right) f(x)-x \frac{d^{3}}{d x^{3}} f(x)-x \frac{d^{3}}{d x^{3}} f(x) \\
& =2 \frac{d^{2}}{d x^{2}} f(x) ; \text { since }\left[\frac{d}{d x}\left(\frac{d^{2}}{d x^{2}}\right) f(x)=2 \frac{d^{3}}{d x^{3}} f(x)\right]
\end{aligned}
$$

Deleting the arbitrary function $f(x)$, we find

$$
\left[\frac{d^{2}}{d x^{2}}, x \frac{d}{d x}\right]=2 \frac{d^{2}}{d x^{2}}
$$

$$
\begin{align*}
{\left[x^{3}, \frac{d}{d x}\right] f(x) } & =\left[x^{3}\left(\frac{d}{d x}\right)-\left(\frac{d}{d x}\right) x^{3}\right] f(x) \tag{b}\\
& =x^{3} \frac{d}{d x} f(x)-\frac{d}{d x}\left[x^{3} f(x)\right] \\
& =x^{3} \frac{d}{d x} f(x)-3 x^{2} f(x)-x^{3} \frac{d}{d x} f(x) \\
& =-3 x^{2} f(x)
\end{align*}
$$

Deleting the arbitrary functions $f(x)$ we get the operator equation

$$
\left[x^{3}, \frac{d}{d x}\right]=-3 x^{2}
$$

Linear Operators

1.For the functions being added or subtracted, the function can be applied to all functions individually.

$$
\hat{A}(f(x)+g(x))=\hat{A} f(x)+\hat{A} g(x)
$$

2.Constants are not affected by the application of linear operators.

$$
\hat{A}\{c f(x)\}=c \hat{A} f(x)
$$

Example:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(3 x^{2}+6 x\right)=6 x+6
$$

Hermitian Operators

1.A hermitian operator can be flipped over to the other side. In other words, it justifies the complex conjugate transpose of matrices.

If \hat{A} is hermitian, $\{g \mid \hat{A} . f\}=\{f \mid \hat{A} . g\}$
2.The eigenvalues of a hermitian operator are always real.
from above example, $\{f \mid \hat{A} . f\}$ must be a real value.
3.The eigenvalues are orthonormal by convention for a hermitian operator. in other words, they have a complete set of orthonormal eigenfunctions (eigenvectors).

Example:

$$
\left.\begin{array}{c}
\Psi_{1}=\mathrm{e}^{-\mathrm{i} x} \\
\Psi_{2}=\cos \mathrm{x} \\
\hat{A}=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}
\end{array}\right] \begin{gathered}
\cos x \frac{\mathrm{~d}^{2}}{d x^{2}}\left(\mathrm{e}^{-\mathrm{i} k}\right) \mathrm{d} x=-\mathrm{i} \int \cos x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(e^{-i x}\right) \mathrm{d} x=-\int \cos x e^{-i x} d x \\
\int \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \cos x \mathrm{e}^{-\mathrm{i} x} \mathrm{~d} x=-\int \frac{\mathrm{d}}{\mathrm{~d} x^{2}} \sin x \mathrm{e}^{-\mathrm{i} x} \mathrm{~d} x=-\int \cos x^{e^{-i x}} d x
\end{gathered}
$$

Eigen functions and eigen values

If for an operator \hat{A}, we can write
$\widehat{\boldsymbol{A}} \boldsymbol{f}=\boldsymbol{k} f$ where k is a constant then, f is called an eigen function of \widehat{A} and k is called its eigen value.

Example: $e^{i k x}$ is an eigenfunction of a operator $\hat{P}_{x}=-i h \frac{\partial}{\partial \mathrm{x}}$

$$
\begin{aligned}
& F(x)=e^{i k x} \\
& =-i t \frac{\partial}{\partial x} \mathrm{e}^{\mathrm{ilx}} \\
& =-\mathrm{i}^{2} \mathrm{hk}^{-2} \mathrm{e}^{\mathrm{i} k x} \\
& =\mathrm{hk} \mathrm{k}^{-2} \mathrm{e}^{\mathrm{ikx}} \quad \text { Thus } \mathrm{e}^{\mathrm{ikx}} \text { is an eigenfunction }
\end{aligned}
$$

Expectation values

When a system is in an eigenstate of observable \widehat{A} (i.e., when the wavefunction is an eigenfunction of the operator) then the expectation value of \widehat{A} is the eigenvalue of the wavefunction. Thus if

$$
\begin{aligned}
& \hat{A} \psi(\mathbf{r})=a \psi(\mathbf{r}) \\
& =\quad \frac{\int \psi^{*}(\mathbf{r}) \hat{A} \psi(\mathbf{r}) d \mathbf{r}}{\int \psi^{*}(\mathbf{r}) a \psi(\mathbf{r}) d \mathbf{r}} \\
& =\frac{a \int \psi^{*}(\mathbf{r}) \psi(\mathbf{r}) d \mathbf{r}}{a} \\
& =\quad
\end{aligned}
$$

$$
\text { Average Value, }\left\langle A>\quad=\int \psi^{*}(\mathbf{r}) \hat{A} \psi(\mathbf{r}) d \mathbf{r}\right.
$$

