Operators

Physical properties		Operators	
Name of Operator	Observables	Operators	Symbols
Position	Position with x coordinate	x	x
Momentum	x component of momentum	-íħ . ∂/∂x	p _x
Angular momentum	z component of angular momentum	-ίħ . <i>∂/∂</i> Φ	Lz
K.E operator	Kinetic energy	-ħ²/2m . ∂/∂x	Т
P.E operator	Potential energy	V _(x)	V
Total energy (E)	Hamiltonian operator (Time-Independent)	-ħ²/2m.∂/∂x + V(x)	Ĥ
Total energy (E)	Hamiltonian operator (Time-dependent)	-íħ . ∂/∂t	Ĥ

Addition and Subtraction of Operators

$$(\hat{A} + \hat{B})f(x) = \hat{A}f(x) + \hat{B}f(x)$$
$$(\hat{A} - \hat{B})f(x) = \hat{A}f(x) - \hat{B}f(x)$$

Products of Operators

 $\hat{A}\hat{B}f(x) = \hat{A}\{\hat{B}f(x)\}$

In general, $\hat{A}\hat{B}f(x) \neq \hat{B}\hat{A}f(x)$

Let us consider,
$$\hat{A} = x$$
 and $\hat{B} = \frac{d}{dx}$
 $f(x) = 3x^2$
 $(\hat{A} + \hat{B})f(x) = \left(x + \frac{d}{dx}\right)3x^2$
 $= x \times 3x^2 + \frac{d}{dx}(3x^2)$
 $= 3x^3 + 6x$

$$\hat{A}\hat{B}f(x) = x \times \frac{d}{dx}3x^2 = x \times 6x = 6x^2$$
$$\hat{B}\hat{A}f(x) = \frac{d}{dx}(x \times 3x^2) = \frac{d}{dx}3x^3 = 9x^2$$

Commutators

If two operators commute then, $\hat{A}\hat{B}f(x) = \hat{B}\hat{A}f(x)$ $[\hat{A}\hat{B}]f(x) = (\hat{A}\hat{B} - \hat{B}\hat{A})f(x) = 0$

Commutator, $[\hat{A}\hat{B}] = (\hat{A}\hat{B} - \hat{B}\hat{A})$

In the previous example,

$$\hat{A}\hat{B}f(x) = x \times \frac{d}{dx}3x^2 = x \times 6x = 6x^2$$
$$\hat{B}\hat{A}f(x) = \frac{d}{dx}(x \times 3x^2) = \frac{d}{dx}3x^3 = 9x^2$$

$$[\hat{A}\hat{B}]f(x) = (\hat{A}\hat{B} - \hat{B}\hat{A})f(x) = 6x^2 - 9x^2 = 3x^2 = f(x)$$
$$\Rightarrow [\hat{A}\hat{B}]f(x) = f(x)$$

 $\Rightarrow \left[\hat{A}\hat{B} \right] = 1$

Example 3.1. Find the commutators of each of the following pairs of operators

$$(a) \frac{d^{2}}{dx^{2}}, x \frac{d}{dx} \qquad (b) x^{3}, \frac{d}{dx}$$
$$(a) \left[\frac{d^{2}}{dx^{2}}, x \frac{d}{dx} \right] f(x) = \frac{d^{2}}{dx^{2}} \left(x \frac{d}{dx} \right) f(x) - \left(x \frac{d}{dx} \right) \left(\frac{d^{2}}{dx^{2}} \right) f(x)$$
$$= \frac{d}{dx} \left(\frac{d}{dx} + x \frac{d^{2}}{dx^{2}} \right) f(x) - x \frac{d}{dx} \left(\frac{d^{2}}{dx^{2}} \right) f(x)$$
$$= \left(\frac{d^{2}}{dx^{2}} + \frac{d^{2}}{dx^{2}} + 2x \frac{d^{3}}{dx^{3}} \right) f(x) - x \frac{d^{3}}{dx^{3}} f(x) - x \frac{d^{3}}{dx^{3}} f(x)$$
$$= 2 \frac{d^{2}}{dx^{2}} f(x); \text{ since } \left[\frac{d}{dx} \left(\frac{d^{2}}{dx^{2}} \right) f(x) = 2 \frac{d^{3}}{dx^{3}} f(x) \right]$$

Deleting the arbitrary function f(x), we find

$$\begin{bmatrix} \frac{d^2}{dx^2}, x\frac{d}{dx} \end{bmatrix} = 2\frac{d^2}{dx^2}$$
(b) $\begin{bmatrix} x^3, \frac{d}{dx} \end{bmatrix} f(x) = \begin{bmatrix} x^3 \left(\frac{d}{dx}\right) - \left(\frac{d}{dx}\right) x^3 \end{bmatrix} f(x)$
 $= x^3 \frac{d}{dx} f(x) - \frac{d}{dx} [x^3 f(x)]$
 $= x^3 \frac{d}{dx} f(x) - 3x^2 f(x) - x^3 \frac{d}{dx} f(x)$
 $= -3x^2 f(x)$
Deleting the arbitrary functions $f(x)$ we get the operator equation

 $=-3x^2$

 $x^{2}, \frac{a}{dx}$

Linear Operators

1.For the functions being added or subtracted, the function can be applied to all functions individually. $\hat{A} (f(x) + g(x)) = \hat{A}f(x) + \hat{A}g(x)$ 2.Constants are not affected by the application of linear operators. $\hat{A} \{cf(x)\} = c\hat{A}f(x)$ Example: $\frac{d}{dx}(3x^2 + 6x) = 6x + 6$

Hermitian Operators

1.A hermitian operator can be flipped over to the other side. In other words, it justifies the complex conjugate transpose of matrices.

If \hat{A} is hermitian, $\{g | \hat{A} . f\} = \{f | \hat{A} . g\}$

2. The eigenvalues of a hermitian operator are always real.

from above example, $\{f | \hat{A} , f\}$ must be a real value.

3. The eigenvalues are orthonormal by convention for a hermitian operator. in other words, they have a complete set of orthonormal eigenfunctions (eigenvectors).

Example:

$$\Psi_1 = e^{-ix}$$
$$\Psi_2 = \cos x$$
$$\hat{A} = \frac{d^2}{dx^2}$$

$$\int \cos x \frac{d^2}{dx^2} (e^{-ik}) dx = -i \int \cos x \frac{d}{dx} (e^{-ix}) dx = -\int \cos x e^{-ix} dx$$

$$\int \frac{\mathrm{d}^2}{\mathrm{d}x^2} \cos x \mathrm{e}^{-\mathrm{i}x} \,\mathrm{d}x = -\int \frac{\mathrm{d}}{\mathrm{d}x^2} \sin x \mathrm{e}^{-\mathrm{i}x} \,\mathrm{d}x = -\int \cos x^{e^{-\mathrm{i}x}} \,\mathrm{d}x$$

Eigen functions and eigen values

If for an operator \hat{A} , we can write $\widehat{A}f = kf$ Where k is a constant then, f is called an eigen function of \widehat{A} and k is called its eigen value. Example: e^{ikx} is an eigenfunction of a operator $\hat{P}_x = -i\hbar \frac{\partial}{\partial x}$ $F(x) = e^{ikx}$ $= -i\hbar \frac{\partial}{\partial x} e^{ikx}$ $= -i^2 \hbar k^2 e^{ikx}$ $= \hbar k^2 e^{ikx}$ Thus e^{ikx} is an eigenfunction

Expectation values

When a system is in an *eigenstate* of observable \hat{A} (i.e., when the wavefunction is an eigenfunction of the operator) then the expectation value of \hat{A} is the eigenvalue of the wavefunction. Thus if

Average Value,
$$\langle A \rangle$$
 = $\int \psi^*(\mathbf{r}) \hat{A}\psi(\mathbf{r}) d\mathbf{r}$
= $\int \psi^*(\mathbf{r}) \hat{A}\psi(\mathbf{r}) d\mathbf{r}$
= $\frac{\int \psi^*(\mathbf{r}) a\psi(\mathbf{r}) d\mathbf{r}}{a \int \psi^*(\mathbf{r})\psi(\mathbf{r}) d\mathbf{r}}$
= $\frac{a \int \psi^*(\mathbf{r})\psi(\mathbf{r}) d\mathbf{r}}{a \int \psi^*(\mathbf{r})\psi(\mathbf{r}) d\mathbf{r}}$