Name:	
Period:	Date:

The following questions represent potential types of quiz questions. Please answer each question completely and thoroughly. The solutions will be posted on-line on Monday.

6. Consider the reaction: $P_4 + 6 H_2 \rightarrow 4 PH_3$. data that were obtained are shown in the table. A rate study of this reaction was conducted at 298 K. The

AP Chemistry Dr. Mandes

[P ₄], mol/L	[H ₂], mol/L	Initial Rate, mol/(L · s)
0.0110	0.0075	3.20 x 10 ⁻⁴
0.0110	0.0150	6.40 x 10 ⁻⁴
0.0220	0.0150	6.39 x 10 ⁻⁴

a. What is the order with respect to: $P_4 _ 0_$.

 $H_2 _1_$.

b. Write the rate law for this reaction. $rate = k[H_2]$

c. Determine the value and units of the rate constant, k. plug and chug using the rate law & data from exp't 1 and solving for k, we get $k = 0.0427 \text{ s}^{-1}$

7. Consider the reaction: $SO_2 + O_3 \rightarrow SO_3 + O_2$. A rate study of this reaction was conducted at 298 K. The data that were obtained are shown in the table.

[SO ₂], mol/L	[O ₃], mol/L	Initial Rate, mol/(L · s)
0.25	0.40	0.118
0.25	0.20	0.118
0.75	0.20	1.062

a. What is the order with respect to: $SO_2 = 2$.

$$O_3 __0_.$$

b. Write the rate law for this reaction. rate = $k[SO_2]^2[O_3]^0$

c. Determine the value and units of the rate constant, k. plug and chug using the rate law & data from exp't 1 and solving for k, we get $k = 2.36 \text{ mol}\cdot\text{L}^{-1} \cdot \text{s}^{-1}$

8. Consider the following mechanism. $A_2 + B_2 \rightarrow R + C$

$$A_2 \ + \ R \ \rightarrow \ C \ (fast)$$

(slow)

a. Write the overall balanced chemical equation. 2 A₂ + B₂ \rightarrow 2 C

- **b.** Identify any intermediates within the mechanism. **R**
- **c.** What is the order with respect to each reactant? $A_2 1^{st}$; $B_2 1^{st}$
- **d.** Write the rate law for the overall reaction. $rate = k [A_2][B_2]$
- 9. Consider the following mechanism. $O_3 \longrightarrow O_2 + O$ (fast) $O_3 + O \longrightarrow 2 O_2$ (slow)
 - **a.** Write the overall balanced chemical equation. $2 O_3 \rightarrow 3 O_2$

- **b.** Identify any intermediates within the mechanism. **O**
- c. What is the order with respect to each reactant? $O_3 2^{nd}$ (once in rds, then once when sub for intermediate)
- **d.** Write the rate law for the overall reaction. rate = $k [O_3]^2$
- 10. Consider the reaction: $2B \rightarrow C + 3D$. In one experiment it was found that at 300 K the rate constant is 0.134 L/(mol·s). A second experiment showed that at 450 K, the rate constant was 0.569 L/(mol·s). Determine the activation energy for the reaction.

at 300 K: $k_{300} = Ae^{\frac{-Ea}{RT}}$

at 450 K: $k_{450} = Ae^{\frac{-Ea}{RT}}$

 $\ln\left(\frac{k_{450}}{A}\right) = \frac{-E_a}{RT}$ $\ln(k_{450}) - \ln(A) = \frac{-E_a}{RT} \quad where \ln(A) = \ln(k_{300}) - \frac{-E_a}{RT}$ so that $\ln(k_{450}) - [\ln(k_{300}) - \frac{-E_a}{RT}] = \frac{-E_a}{RT}$ $\ln\left(\frac{k_{450}}{k_{300}}\right) = \frac{E_a}{R} \left(\frac{1}{T_{300}} - \frac{1}{T_{450}}\right)$

plug and solve for Ea, Ea = 10.8 kJ

MORE PROBLEMS>>>>

Determining rate law from mechanisms (use the rate-determining step to get the orders).

1. One method for the destruction of ozone in the upper atmosphere is:

		O ₃	+	NO	\rightarrow	NO_2 +	O_2	(slow)
		NO ₂	+	0	\rightarrow	NO +	<u>O2</u>	(fast)
ove	erall rxn	O ₃	+	0	\rightarrow	$2O_2$		
a.	a. Which species is an intermediate?							
b.	b. Which species is a catalyst?							
c.	c. Which is the rate-determining step (rds)?							
d.	d. Number of times each reactant is used in the rds?							
e.	e. Write the rate law for the reaction.							

Determining rate law from Initial Rates. (Use the ratio of initial rates to get the orders).

2. Consider the table of initial rates for the reaction: $2CIO_2 + 2OH^{1-} \rightarrow CIO_3^{1-} + CIO_2^{1-} + H_2O$.

Experiment	[ClO ₂] _o , mol/L	[OH1-] o, mol/L	Initial Rate, mol/(L · s)
1	0.050	0.100	5.75 x 10 ⁻²
2	0.100	0.100	2.30 x 10 ⁻¹
3	0.100	0.050	1.15 x 10 ⁻¹

a. Order with respect to ClO_2 :

b. Order with respect to OH^{1-} :

c. Rate law for this reaction:

d. Value and units for the rate constant:

3.

Consider the table of initial rate for the reaction between hemoglobin (Hb) and carbon monoxide.

Experiment	[HB] _o , µmol/L	[CO] o, µmol/L	Initial Rate, µmol/(L · s)
1	2.21	1.00	0.619
2	4.42	1.00	1.24
3	3.36	2.40	2.26

a. Order with respect to HB:

b. Order with respect to CO:

c. Rate law for this reaction:

d. Value and units for the rate constant:

Determining rate law from time and concentration data. (Use the integrated rate laws and graphing to get orders).

4. The rate of this rxn depends only on NO₂: NO₂ + CO \rightarrow NO + CO₂. The following data were collected.

Time (s)	[NO ₂] (mol/L)
0	0.500
1200.	0.444
3000.	0.381
4500.	0.340
9000.	0.250
18000.	0.174

a. Order with respect to NO₂:

b. Rate law for this reaction:

- **c.** [NO₂] at 2.7×10^4 s after the start of the rxn.
- 5. The following data were obtained for the decomposition of N_2O_5 in CCl₄.

The following data were collected.

Time (s)	$[N_2O_5] \ (mol/L)$
0	1.46
423	1.09
753	0.89
1116	0.72
1582	0.54
1986	0.43
2343	0.35

a. Order with respect to N_2O_5 :

b. Rate law for this reaction:

c. $[N_2O_5]$ at 3.5 x 10³ s after the start of the rxn.

SOLUTIONS!!!!!! TO "MORE PROBLEMS">>>>

1.	a.	Which species is an intermediate?	NO ₂
	b.	Which species is a catalyst?	NO
	c.	Which is the rate-determining step (rds)?	slow step
	d.	Number of times each reactant is used in the rds?	O_3 is used once so order is 1 O is used zero times, so order is 0
	e.	Write the rate law for the reaction.	rate = $k[O_3]^1$

Note that for a free-response question you must show the work (ratio of rate laws), but not for multiple choice

2.	$\frac{rate_2}{rate_1} = \frac{k[ClO_2]_2^m[OH^-]_2^n}{k[ClO_2]_1^m[OH^-]_1^n}$	$\frac{rate_2}{m} = \frac{k[ClO_2]_2^m[OH^-]_2^n}{m}$
	$rate_1 k[ClO_2]_1^m[OH^-]_1^n$	$\overline{rate_3} = \frac{1}{k[ClO_2]_3^m[OH^-]_3^n}$
	$0.230 - 0.100^{m}$	$0.230 - 0.100^{m}$
	$0.0575 - 0.0500^m$	$0.115 - 0.0500^m$
	$4 = 2^{m}$	$2 = 2^{n}$
	2 = m, so order is 2	1 = n, so order is 1
	a. Order with respect to ClO ₂ :	2
	b. Order with respect to OH ¹⁻ :	1
	c. Rate law for this reaction:	so, rate = $k[ClO_2]^2[OH^{1-}]^1$
	d. Value and units for the rate constant:	$\mathbf{k} = 230 \ \frac{L^2}{mol^2 \cdot s}$

3.

get the value by subbing the data for exp't 1 into the rate law and solving for \boldsymbol{k}

$\frac{rate_2}{rate_1} = \frac{k[HB]_2^m[CO]_2^n}{k[HB]_1^m[CO]_1^n}$	$\frac{rate_3}{rate_1} = \frac{k[HB]_3^m[CO]_3^n}{k[HB]_1^m[CO]_1^n}$
$\frac{1.24}{0.619} = \frac{4.42^m}{2.21^m} \mathrm{s}$	$\frac{2.26}{0.619} = \frac{\left(3.36\right)^1}{\left(2.21\right)^1} \frac{\left(2.41\right)^n}{\left(1.00\right)^n}$
$2 = 2^m$ 1 = m, so the order is 1	$2.4 = 2.4^n$ 1 = n, so the order is 1
a. Order with respect to HB:	1
b. Order with respect to CO:	1
c. Rate law for this reaction:	so, rate = $k[HB]^1[CO]^1$
d. Value and units for the rate constant:	$k = 0.28 \frac{L}{mol \cdot s}$ get the value by subbing the data for exp't 1 into the rate law and solving for k

4.					
• Graph for zeroeth order: $[NO_2]$ vs. time $[y vs. x; y = ax + b]$					
slope = -1.72×10^{-5}	y-intercept = 0.451		$r^2 = 0.901$		
General integrated rate law:	[A] = -kt +	[A]o			
This reaction's integrated rate law:	$[H_2O_2] = (-1)$	$72 x 10^{-5}$)t + 0.451	$r^2 = 0.901$		
• Graph for first order: $\ln[NO_2]$ vs. time [y vs. x; $y = ax + b$]					
slope = -5.78×10^{-5}	y-intercept =	-0.770	$r^2 = 0.971$		
General integrated rate law:	ln[A] = -kt	+ ln[A] _o			
This reaction's integrated rate law:	$ln [NO_2] = ($	$-5.78 x 10^{-5} t + (-0.770)$	$r^2 = 0.971$		
• Graph for second order: $[NO_2]^{-1}$ vs. time $[y \text{ vs. } x; y = ax + b]$					
slope = 2.10×10^{-4} order is 2	y-intercept = 2.01		$r^2 = 0.999 - best so$		
General integrated rate law:	$[A]^{-1} = \mathrm{kt} + [A]^{-1}_{o}$				
This reaction's integrated rate law:	$[NO_2]^{-1} = 2.10 x 10^{-4} t + 2.01 r^2 = 0.999$				
• Graph with the greatest r ² value:	$[NO_2]^{-1}$ vs. time, so the order is second order				
a. Order with respect to NO ₂ :		2			
b. Rate law for this reaction:		rate = k	$\mathbf{e} = \mathbf{k}[\mathbf{NO}_2]^2$		
c. [NO ₂] at 2.7 x 10 ⁴ s after the start + 2.01"	of the rxn.	the rxn. Subbing 2.7 x 10 ⁴ s for time in " $[NO_2]^{-1} = 2.10 x 10^{-4} t$			
		$[NO_2] = 0.130 \text{ mol/L}$			

5.

• Graph for zeroeth order: $[N_2O_5]$ vs. time $[y \text{ vs. } x; y = ax + b]$				
slope = -4.54×10^{-4}	y-intercept = 1.31	$r^2 =$	0.947	
General integrated rate law:	[A] = -kt + [A]o			
This reaction's integrated rate law:	$[N_2O_5] = (-4.54 \times 10^{-4})t + 1.31 r^2 = 0$.947		

• Graph for first order: $ln[N_2O_5]$ vs. time [y vs. x; y = ax + b]

slope = -6.05×10^{-4}	y-intercept = 0353	$r^2 = 0.999$
General integrated rate law:	$ln[A] = -kt + ln[A]_o$	
This reaction's integrated rate law:	$\ln[N_2O_5] = (-6.05 x 10^{-4})t + 0.353$	$r^2 = 0.999$ - best so
order is 1		

• Graph for second order: $[N_2O_5]^{-1}$ vs. time [y vs. x; y = ax + b]

slope = 9.18×10^{-4} y-intercept = 0.517 $r^2 = 0.971s$ General integrated rate law: $[A]^{-1} = kt - + [A]_o^{-1}$ This reaction's integrated rate law: $[N_2O_5]^{-1} = 9.18 \times 10^{-4}t + 0.517 r^2 = 0.971$

- Graph with the greatest r² value: ln [N₂O₅] vs. time, so the order is first order Order with respect to N₂O₅: Rate law for this reaction:
 - a. Order with respect to N₂O₅:b. Rate law for this reaction:

 $1 \\ rate = k[N_2O_5]^1 \\$

c. $[N_2O_5]$ at 3.5 x 10³ s after the start of the rxn. ⁴⁾t + 1.31"

Subbing $3.5 \ x \ 10^3$ s for time in "ln[N₂O₅] = (-6.05 \ x \ 10^-

 $[N_2O_5] = 0.171 \text{ mol/L}$