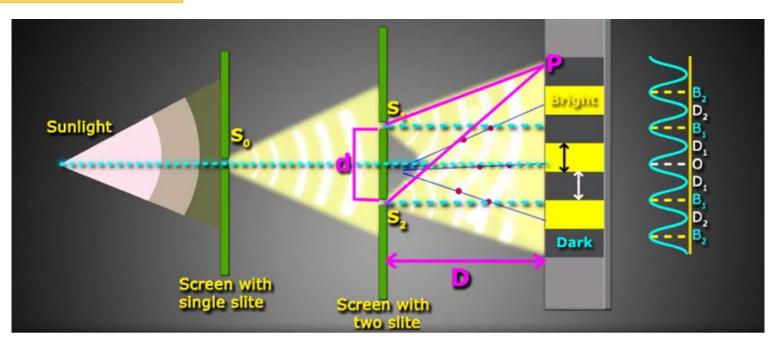


This phenomena of change in the frequency of scattered X-ray is called **Compton effect**.

Young's double slit experriment



Arthur Holly Compton

$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc}(1 - \cos \theta)$

Thomas Young

de Broglie's hypothesis: Dual character of matter

Einstein pointed out: Light has both **particle** and **wave nature** de Broglie expanded: All form of matters show dual character

Louis de Broglie

Special theory of relativity: $E = mc^2$ Planck's equation: $\mathbf{E} = \mathbf{hv} = \frac{1}{2}$ Therefore, $\mathbf{mc}^2 = \frac{hc}{\lambda}$ $\lambda = \frac{h}{mc}$ For, all matter other than light 'c' is replaced by 'v' $\lambda = \frac{h}{mv}$

If an electron with charge e is accelerated with a potential V, then its kinetic energy,

$$KE = \frac{1}{2}mv^2 = eV$$
$$\Rightarrow v = \sqrt{\frac{2eV}{m}}$$

$$\lambda = \frac{h}{\sqrt{\frac{2eV}{m}}}$$
; e = 1.6

$$= \frac{6.626 \times 10^{-34}}{\sqrt{2V \times 1.6 \times 10^{-19} \times 9.11 \times 10^{-31}}}$$

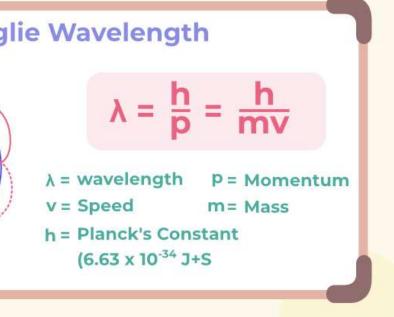
> $\lambda = \frac{12.27 \times 10^{-10}}{\sqrt{V}}$ meter
or) $\lambda = \frac{12.27}{\sqrt{V}}$ Å

$$\lambda = \frac{6.626 \times 10^{-34}}{\sqrt{2V \times 1.6 \times 10^{-19} \times 9.11 \times 10^{-31}}}$$
$$\Rightarrow \lambda = \frac{12.27 \times 10^{-10}}{\sqrt{V}} \text{ meter}$$
$$(\text{or}) \lambda = \frac{12.27}{\sqrt{V}} \text{ Å}$$

$$\lambda = \frac{6.626 \times 10^{-34}}{\sqrt{2V \times 1.6 \times 10^{-19} \times 9.11 \times 10^{-31}}}$$

$$\Rightarrow \lambda = \frac{12.27 \times 10^{-10}}{\sqrt{V}} \text{ meter}$$

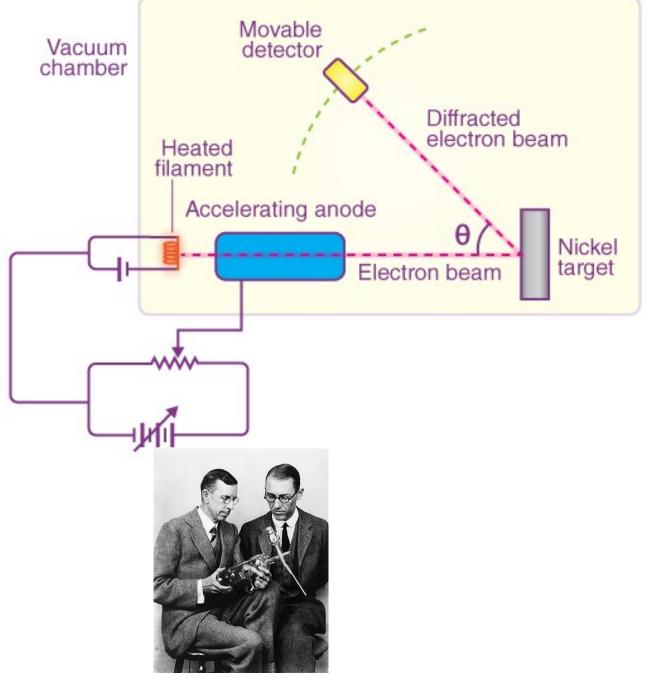
(or) $\lambda = \frac{12.27}{\sqrt{V}} \text{ Å}$



x 10⁻¹⁹ C, m = 9.11 x 10⁻³¹ Kg

When V = 10 -10,000 Volt, $\lambda = 3.877$ to 0.1226 Å

Davisson–Germer experiment

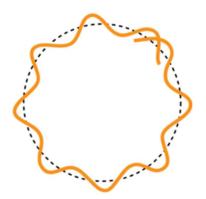


Clinton Davisson (left) and Lester Germer (right)

Bohr said, "The electron is bound in a circular orbit around the nucleus such that the angular momentum is quantized in integral units of Planck's constant"

 $mvr = \frac{nh}{2\pi}$; m = mass of electron, v = velocity of electron, r = radius of the orbit

Electron behaves as a stationary wave which extends round the nucleus and always in phase.



Wave in phase

Wave out of phase

Now, according to de Broglie $\lambda = \frac{h}{mv}$

Combining, $mvr = \frac{nh}{2\pi}$

therefore, $2\pi r = n\lambda$ $\Rightarrow \lambda = \frac{2\pi r}{r}$

Significance of de Broglie's concept

- The wave character of a large object in motion, has no practical significance, since their wavelength is too small to be observed and hence cannon be measured.
- The wave character of a small object in motion has practical significance, since their wavelength is easily observed in electromagnetic spectrum.

Heisenberg's uncertainty principle

It is not possible to determine simultaneously and precisely both position and momentum (or velocity) of a microscopic moving particle (e.g. Proton, neutron or electron)

Mathematically, $\Delta x \times \Delta p \geq \frac{h}{4\pi}$

 Δx = uncertainty in position Δp = uncertainty in momentum

Alternatively, $\Delta x \times (m \times \Delta v) = \frac{h}{4\pi}$

Q. Weight of a cricket ball is 200 g and uncertainty of position is 5pm. What is the uncertainty in velocity? Q. Uncertainty position of electron is 5 pm. What is the uncertainty of velocity? Mass of electron = 9.1×10^{-31} kg.

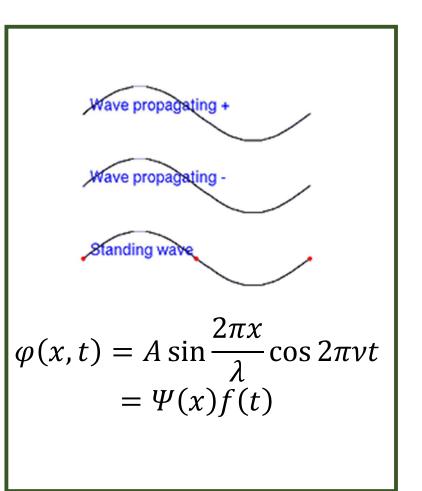
Uncertainty & Bohr's theory

- > Heisenberg's principle tells that, we cannot describe the exact path on an electron due to its wave nature.
- > Thus Bohr theory, which tells that electrons move in a fixed path, is no longer correct.
- > At most, we can predict the probability of locating the electron with a probable velocity in a particular region of space round the nucleus.

Schrodinger Wave Equation

Electron is a Wave!!!

Bohr's theory violates two fundamental laws: **Dual nature of matter and uncertainty principle**



Time-independent wave equation

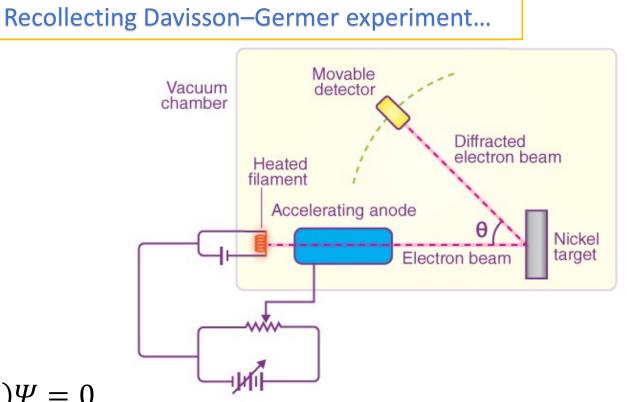
$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\Psi = 0$$
$$\Rightarrow \nabla^2 \Psi + \frac{8\pi^2 m}{h^2} (E - V)\Psi = 0$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 is called Laplacian operator

 Ψ is called wave function

$$\Psi(x) = A\sin\frac{2\pi x}{\lambda}$$

E = total energy, V = potential energy



Erwin Schrödinger

$$\Psi(x) = A \sin \frac{2\pi x}{\lambda}$$
$$\Rightarrow \frac{d\Psi}{dx} = \left(A \cos \frac{2\pi}{\lambda}\right) \left(\frac{2\pi}{\lambda}\right) = \left(\frac{2\pi A}{\lambda}\right) \cos \frac{2\pi}{\lambda}$$
$$\Rightarrow \frac{d^2 \Psi}{dx^2} = \frac{d}{dx} \left(\frac{d\Psi}{d^x}\right) = \left(\frac{2\pi A}{\lambda}\right) \left(-\sin \frac{2\pi x}{\lambda}\right) \left(\frac{2\pi}{\lambda}\right) = -\frac{4\pi^2}{\lambda^2} \left(A \sin \frac{2\pi x}{\lambda}\right) =$$

Kinetic energy,
$$T = \frac{1}{2}mv^2 = \frac{m^2v^2}{2m} = \frac{h^2}{2m\lambda^2}$$
 $[\lambda = \frac{h}{mv}]$

 $\Rightarrow \frac{1}{\lambda^2} = \frac{2m}{h^2}T = \frac{2m}{h^2}(E - V) \quad \text{[total energy(E) = kinetic energy(T) + potential energy(V)]}$

$$\frac{\partial^2 \Psi}{\partial x^2} = -\frac{8\pi^2 m}{h^2} (E - V) \Psi$$
$$\Rightarrow \frac{\partial^2 \Psi}{\partial x^2} + \frac{8\pi^2 m}{h^2} (E - V) \Psi = 0$$

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial \pi^2 m}{\partial z^2} (E - V) \Psi = 0$

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\Psi = 0$$

$$\Rightarrow \frac{h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \Psi + (E - V)\Psi = 0$$

$$\Rightarrow \frac{h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \Psi - V\Psi = -E\Psi$$

$$\Rightarrow - \left[\frac{h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) - V \right] \Psi = E\Psi$$

$$\Rightarrow \hat{H}\Psi = E\Psi$$

 $-rac{h^2}{8\pi^2 m} \,
abla^2 + V = \widehat{H}$, Hamiltonian Operator

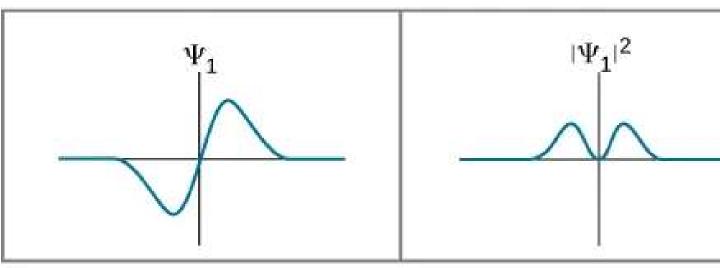
Significance of Wave Function

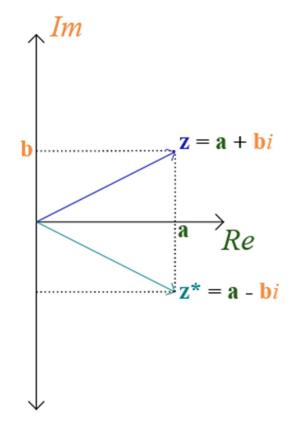
Complex conjugate Ψ = a + ib

 Ψ^* = a -ib

 $|\Psi|^2$ or $\Psi\Psi^*$ is proportional to the probability of finding a particle at a given time

i.e. probability of an electron finding in a box of length dx, width dy, and height dz is $P \propto \Psi \Psi^* dxdydz = \Psi \Psi^* \partial \tau$



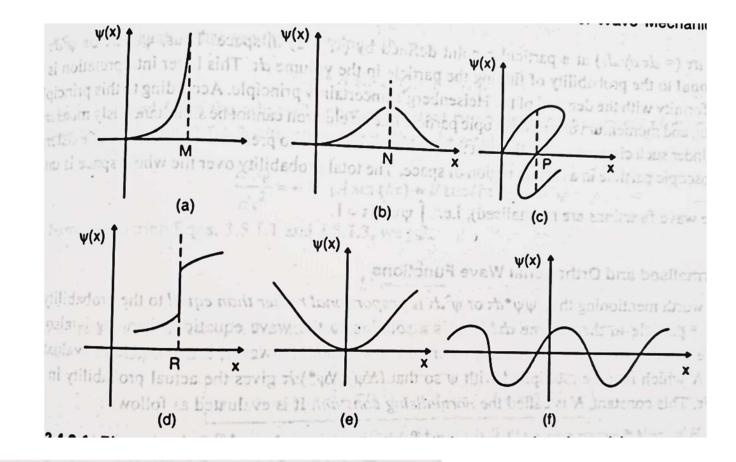


Ψ is imaginary but $\Psi\Psi^*$ is real.

Well behaved or acceptable wave function

- Ψ must be single valued. 1.
- 2 Ψ and its first derivative must be continuous.
- Ψ must be finite; i.e. for all possible values of x, y and z, 3.

 $\int \Psi \Psi^* \partial \tau$ must exist.



Example 2.2. Which of the following functions are acceptable in quantum mechanics?

(i) $\sin x$, (ii) $\tan x$, (iii) $\csc x$, (iv) $\cos x + \sin x$; for $0 \le x \le \pi/2$

 $(v) e^{-ax}$, $(vi) x e^{-ax}$; for $x \ge 0$ and $(vii) e^{-bx^2}$ $(viii) e^{-ax}$; for $x \le 0$

When x lies between 0 and $\pi/2$, the function (i) and (iv) are acceptable while (ii) and (iii) are not acceptable because (ii) tends to infinite at $x \rightarrow \pi/2$ and (iii) tends to infinite at $x \rightarrow 0$.

When $x \ge 0$ (v) is acceptable while (vi) is not acceptable because it tends to infinite as $x \rightarrow \infty$.

When $x \leq 0$ (vii) is acceptable while (viii) is not acceptable.

Normalised and Orthogonal function

The probability of finding a particle in the whole space must be unity.

$$\int_{-\infty}^{+\infty} \Psi^2 \,\mathrm{d}\tau = 1$$

 $+\infty$ $\int \Psi \Psi^* d\tau = 1 \qquad \Psi \text{ and } \Psi^* \text{ are each other complex conjugate}$

If Ψ fulfils the above condition then it is called **normalised**.

For two wavefunctions Ψ_1 and Ψ_2 , if

$$\int_{-\infty}^{+\infty} \Psi_1^* \, \psi_2 \, \mathrm{d}\tau = 0$$

 Ψ_1 and Ψ_2 are called **orthogonal** to each other.

Example 2.3. Normalise the functions $\psi = x^2$ over the interval $0 \le x \le k$ (k is a constant). Let the normalised function be Nx^2 . Therefore, by (2.15) $\int_{0}^{k} (N\psi)^{2} dx = \int_{0}^{k} N^{2} x^{4} dx = 1$ $N^2 \int x^4 \, dx = 1$ or $N^2 \cdot \left[\frac{x^5}{5}\right]_0^k = 1$ or $N = \left[\frac{5}{k^5}\right]^{1/2}$ Hence the normalised function is $\left(\frac{5}{k^5}\right)^{1/2} x^2$ Example 2.4. Show that $\psi_1 = x$ and $\psi_2 = x^2$ are orthogonal over the interval $-k \le x \le k$ [k is a constant]. By the condition (2.19) $\int_{-k}^{k} \psi_{1} \psi_{2} dx = \int_{-k}^{k} x^{3} dx$ $\left[\frac{x^{4}}{4} \right]_{-k}^{k} = \left[\frac{1}{4} - \frac{1}{4} \right] k^{4} = 0$ Thus, the wavefunction ψ_1 and ψ_2 are orthogonal over the interval $-k \leq x \leq k.$

Significance of Schrodinger Wave Equation

Total energy = Kinetic energy + Potential energy $\Rightarrow E\Psi = \widehat{K}\Psi + \widehat{V}\Psi$

$$\widehat{H}\Psi = E\Psi \qquad \qquad \widehat{H} = \widehat{K} + \widehat{V} \qquad \qquad \widehat{H} = -\frac{h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V$$

$$\widehat{K} = -\frac{h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$$

From classical mechanics, $\hat{k} = \frac{1}{2}mv^2 = \frac{1}{2m}mv^2 = \frac{p^2}{2m} = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2)$

$$p_x^2 = -\hbar^2 \frac{\partial^2}{\partial x^2} = \left(\pm i\hbar \frac{\partial}{\partial x}\right)^2$$
 $i = \sqrt{-1}$

$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$$
 $\hat{p}_x^* = i\hbar \frac{\partial}{\partial x}$

 $\hat{p}_{y} = -i\hbar \frac{\partial}{\partial y}$

 $\hat{p}_z = -i\hbar \frac{\partial}{\partial z}$