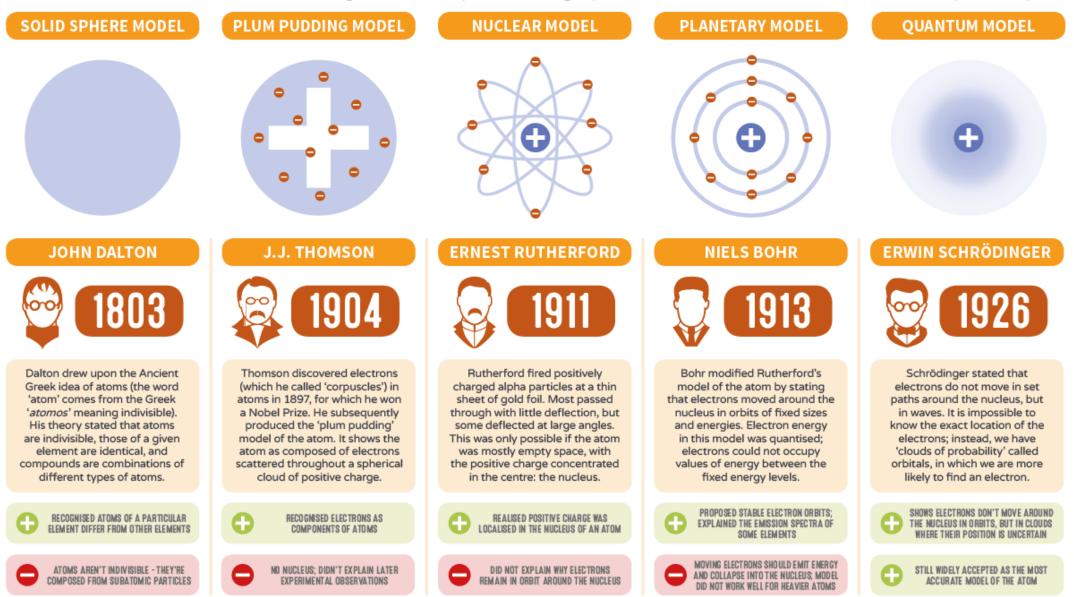
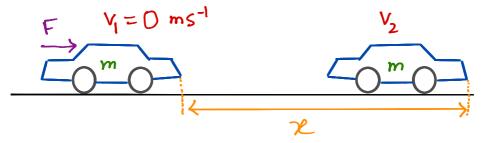
Unit 1: Atomic Structure

A HISTORY OF THE ATOM: THEORIES AND MODELS

How have our ideas about atoms changed over the years? This graphic looks at atomic models and how they developed.



Classical mechanics: Newton's laws of motion



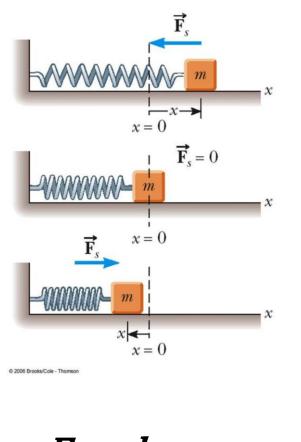
For Macroscopic Particle

Force,
$$F_x = m \frac{dv}{dt} = m \frac{dx^2}{dt^2}$$

The state of an object at any time can be determined by its coordinate and velocity which is are continuous function of time.

□ If the state of an object as well as force applied is known at any instance then we can predict sate of the object any other time.

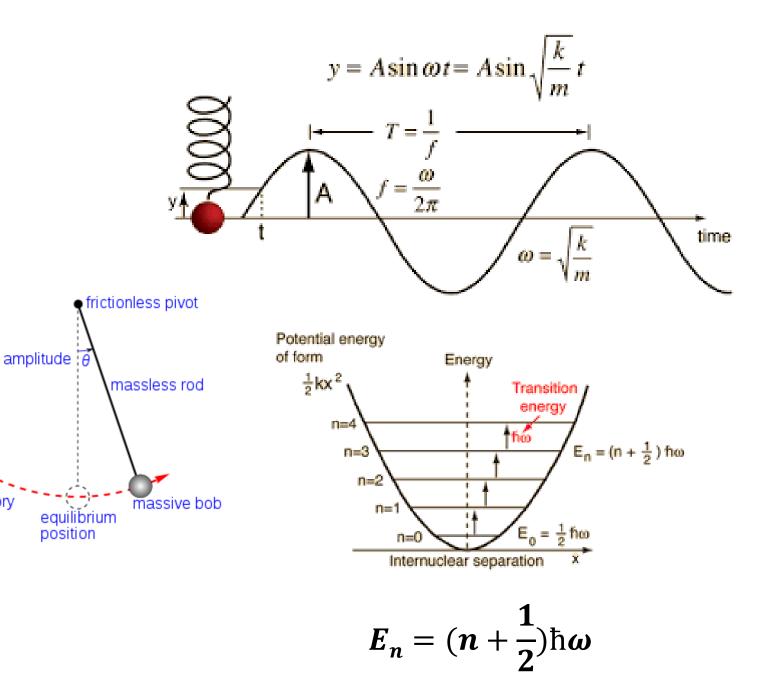
Simple Harmonic Oscillator



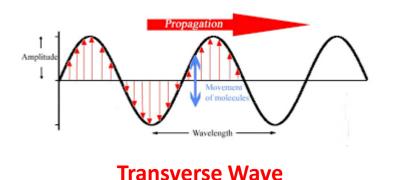
$$F = -kx$$
$$E = 1/2kx^2$$

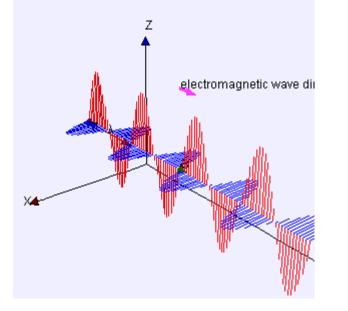
bob's 🔨 🗣

trajectory

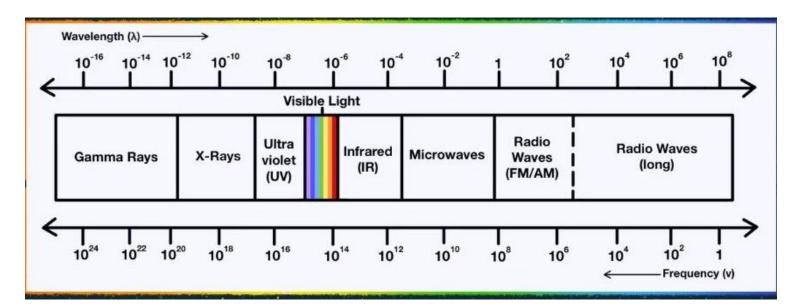


Electromagnetic radiation





Electromagnetic Wave



Speed, $c = 2.998 \times 10^8 \text{ m/s}$

$$\lambda \nu = c$$

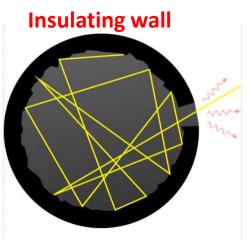
Energy, E = hv = h $\frac{c}{\lambda}$

 The oscillating electric and magnetic fields produced by oscillating charged particles are perpendicular to each other and both are perpendicular to the direction of propagation of the wave.

Black Body Radiation

An ideal body, which emits and absorbs radiations of all frequencies uniformly, is called a black body and the radiation emitted by such a body is called black body radiation.

Max Planck



A perfect black body

Kirchoff's law

- A black body not only absorbs all the radiation falling upon it but also acts as a **perfect radiator** when heated.
- The radiation given out by a black body is **dependent on the temperature** of the cavity and is **independent on the nature of the interior material**.

Observations

- Wavelength corresponding to a peak, shifts from higher to lower values as temperature is raised.
- Energy density per unit wavelength is more at high temperature than at low temperature.

Two fundamental Laws

(a) Wein Displacement Law

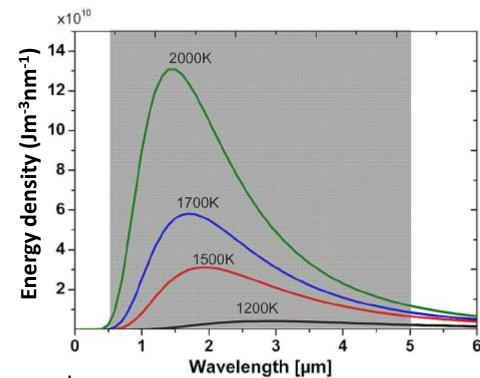
Relation between wavelength corresponding to maximum of a spectral distribution (λ_m) and the temperature (T),

 $\lambda_{\rm m} T = c; c = 2.88 \text{ mmK}$

(b) Stefan-Boltzmann Law

Energy density per unit volume (ϵ) is related to temperature (T) as, $\epsilon = aT^4$; $a = 7.565767 \times 10^{-16} \text{ Jm}^{-3} \text{K}^{-4}$

The same reaction can be written in terms of emmitance (R) $R = \sigma T^4$; $\sigma = \frac{ac}{A} = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$ (Stefan Boltzmann constant)



Theoretical interpretation

(a) Wein Distribution Law

Amount of energy $(E_{\lambda}d\lambda)$ emitted by a black body at a temperature T within the wavelength wavelength range λ and $d\lambda$,

 $\mathsf{E}_{\lambda}\mathsf{d}\lambda = A_{1}\lambda^{-5}e^{-A_{2}/\lambda T} \mathsf{d}\lambda$

 A_1 and A_2 are constants.

When $\lambda = 0$ or ∞ , $E_{\lambda}d\lambda = 0$; i.e. no energy is emitted by a wave of zero or infinite wavelength.

(b) Rayleigh-Jean Distribution Law

Black body radiation consists of a number of oscillator with one possible frequency per oscillator. Energy of each oscillator in equilibrium with source at temperature T, is kT; k = Boltzmann constant The number of oscillator per unit volume (dN) in the frequency range v and v + dv is given by,

$$dN = \frac{8\pi V^2}{c^3} dv$$

Energy density, $E_v dv = \frac{8\pi V^2}{c^3} kT dv$

Planck's Quantum hypothesis

• An oscillator emits or absorbs radiation discontinuously, in the form of energy packet called quanta. Energy of a quantum radiation given by,

$$E = hv = h\frac{c}{\lambda}$$

- Planck considered the black body radiations to consist of linear oscillators of molecular dimensions and that the energy of a linear oscillator can assume only the discrete values 0, hv, 2hv, 3hv.... nhv
- If N₀, N₁, N₂... are the number of oscillators per unit volume of the hologram possessing energies 0, hv, 2hv.... respectively, then the total number of oscillators N per unit volume will be

$N = N_0 + N_{1+} N_2 + \dots$

But the number of oscillators, N_r having energy E_r is given by (Maxwell's formula)

$$N_r = N_0 e^{-E_r/kT}$$

$$\begin{split} \mathsf{N} &= \mathsf{N}_0 + \mathsf{N}_0 \mathrm{e}^{-\mathsf{E}_1/\mathsf{k}\mathsf{T}} + \mathsf{N}_0 \mathrm{e}^{-\mathsf{E}_2/\mathsf{k}\mathsf{T}} + \dots \\ &= \mathsf{N}_0 + \mathsf{N}_0 \mathrm{e}^{-\mathsf{h}\mathsf{v}/\mathsf{k}\mathsf{T}} + \mathsf{N}_0 \mathrm{e}^{-2\mathsf{h}\mathsf{v}/\mathsf{k}\mathsf{T}} + \dots \\ &= \mathsf{N}_0 (1 + \mathrm{e}^{-\mathsf{h}\mathsf{v}/\mathsf{k}\mathsf{T}} + \mathrm{e}^{-2\mathsf{h}\mathsf{v}/\mathsf{k}\mathsf{T}} + \dots) \\ &= \mathsf{N}_0 (1 + \mathsf{x} + \mathsf{x}^2 + \dots) \\ &= \mathsf{N}_0 / (1 - \mathsf{x}) \end{split}$$

$$E = E_0 N_0 + E_1 N_1 + E_2 N_2 + \dots$$

= 0.N₀ + hv.N₀e^{-E₁/kT} + 2hv.N₀e^{-E₂/kT} +
= = N₀.hv(0 + e^{-hv/kT} + 2e^{-2hv/kT} +)
= N₀ .hv(x + 2x² + 3x³ +)
= N₀hvx/(1-x)²

Average energy per oscillator,
$$\overline{E} = E/N = \frac{N_0 hvx(1-x)}{N_0(1-x)2}$$

$$= \frac{hvx}{(1-x)}$$
$$= \frac{hve^{-hv/kT}}{(1-e^{-hv/kT})}$$
$$= \frac{hv}{(e^{-hv/kT}-1)}$$

The number of oscillator per unit volume (dN) in the frequency range v and v + dv is given by,

$$dN = \frac{8\pi V^2}{c^3} dv$$

Energy density, $E_v dv = \frac{8\pi V^2}{c^3} \frac{hv}{(e^{-hv/kT}-1)} dv$

$$=\frac{8\pi hv^3}{c^3(e^{-hv/kT}-1)}\,dv$$

$$\mathsf{E}_{\lambda}\mathsf{d}\lambda = \frac{8\pi hc}{\lambda^5 (e^{-hc/\lambda kT} - 1)} \, \mathsf{d}\lambda$$

$$dv = (c/\lambda^2)d\lambda$$

(a) Wein Disstribution Law

When, hc>>
$$\lambda kT$$
; $E_{\lambda} d\lambda = \frac{8\pi hc}{\lambda^5} e^{-hc/\lambda kT} d\lambda = A_1 \lambda^{-5} e^{-A2/\lambda T} d\lambda$

(b) Rayleigh-Jean Distribution Law

When, hc<< λkT ; e^{-hc/\lambda kT} = 1 + hc/ λkT + $\frac{1}{2!}$ (hc/ λkT)² + = 1 + hc/ λkT (neglecting higher terms) $E_{\lambda} d\lambda = \frac{8\pi hc}{\lambda^5} \frac{d\lambda}{1 + hc/\lambda kT - 1}$ $= \frac{8\pi}{\lambda^4} kT d\lambda$ $= \frac{8\pi V^2}{c^3} kT d\nu$

(a) Wein Displacement Law

At short wavelength $exp(hc/\lambda kT) >> 1$

 $\mathsf{E}_{\lambda} = \frac{8\pi hc}{\lambda^5} \exp(-hc/\lambda kT)$

Differentiating E_{λ} with respect to λ and equating to zero

$$dE_{\lambda}/d\lambda = 8\pi hc \frac{d}{d\lambda} [\lambda^{-5} \exp(-hc/\lambda kT)] = 0$$

$$\Rightarrow \left[(-5)\lambda^{-6} + \lambda^{-5} \left(\frac{hc}{\lambda^2 kT} \right) \right] \exp\left(-\frac{hc}{\lambda kT} \right) = 0$$

$$\Rightarrow \left[5\lambda^{-6} + \frac{\lambda^{-7} hc}{kT} \right] = 0$$

$$\Rightarrow \lambda T = \frac{hc}{kT} = 2.88m K$$

(b) Stefan Boltzmann Law

If we integrate energy density over the interval λ = 0 to ∞

$$\int_{0}^{\infty} E_{\lambda} d\lambda = \int_{0}^{\infty} \frac{8\pi hc}{\lambda^{5}} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1} d\lambda$$

Substituting $\frac{hc}{\lambda kT} = x$ and $d\lambda = -\frac{hc dx}{x^{2}kT}$
$$\int_{0}^{\infty} E_{\lambda} d\lambda = \int_{0}^{0} \frac{8\pi hc}{\left(\frac{hc}{xkT}\right)^{5}} \frac{1}{(\mathbf{e}^{x} - 1)} \left(-\frac{hc}{x^{2}hT}\right) dx$$
$$= -\frac{8\pi k^{4}T^{4}}{(hc)^{3}} \int_{0}^{0} \frac{x^{3}}{\mathbf{e}^{x} - 1} dx$$
$$= \frac{8\pi k^{4}T^{4}}{(hc)^{3}} \int_{0}^{\infty} \frac{x^{3}}{\mathbf{e}^{x} - 1} dx$$
$$\int_{0}^{\infty} \frac{x^{3}}{\mathbf{e}^{x} - 1} dx = \frac{\pi^{4}}{15}$$
$$= aT^{4}$$

 $a = \frac{8\pi^5 k^4}{15(hc)^3} = \frac{4\sigma}{c}$ and

 $\sigma = \frac{2\pi^5 k^4}{15c^2 h^3}$

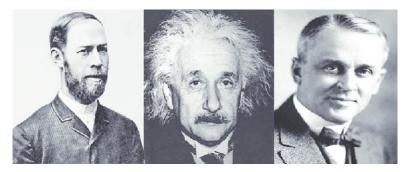
Photoelectric Effect

- When a beam of visible and ultraviolet light falls on the surface of an alkali metal, electrons are emitted from surface.
- This occurs to all solid, liquid and gases; if radiation of appropriate frequency is used.
- When a monochromatic radiation of same frequency and varying intensities are allowed to fall upon a metal surface:
- When V is positive (accelerating); the current increases to a until a saturation current is reached
- When V is negative (retarding); current decreases until it reaches zero. Limiting retarding potential is called stopping potential of the surface at that frequency.
- Voltage V₀ is required to stop electrons of maximum speed v_m

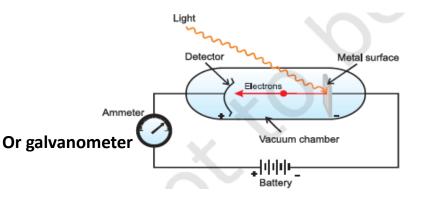
$$\frac{1}{2}mv_m^2 = eV_0$$

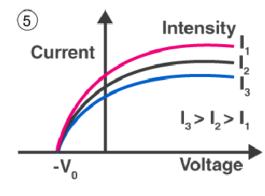
Conservation of energy

Stopping potential is independent of intensity, but dependent of frequency



Hertz, Einstein and Millikan



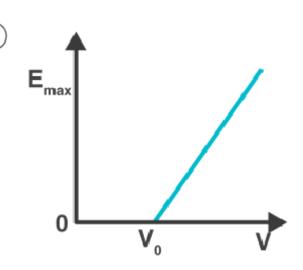


Potential V/s Current

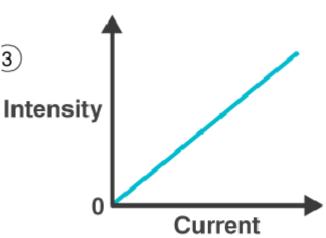
- The relation between Potential, V and frequency, v is linear.
- Stopping potential becomes zero at a certain frequency, called threshold frequency.
- A radiation with frequency above threshold frequency can eject electron from a metal surface.
- Threshold frequency is **different** for different metals.
- The maximum kinetic energy of a photoelectron is independent of the incident radiation, but varies directly with frequency.
- The total photoelectric current is directly proportional to the number of electrons emitted per unit time and this in turn is directly proportional to the intensity of incident radiation.

Limit of classical theory:

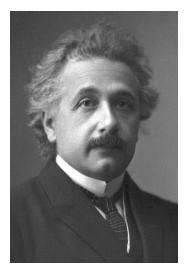
- Kinetic energy of an electron should increase with increasing intensity (number of photon per unit surface area).
- Regardless of the frequency; any radiation that falls for a sufficient time should emit electrons.



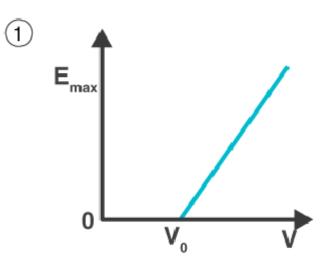
Kinetic energy V/s frequency



Saturated current V/s Intensity



Albert Einstein Nobel prize for physics, 1921



Kinetic energy V/s frequency

When a photon of frequency, v [Energy = hv] falls upon a metal surface:

- The entire energy of the photon is transferred to the metal surface.
- A part of the total energy is used to eject electrons from the surface. This is called work function (hv₀): the energy corresponding to the threshold frequency (v₀).
- The rest of the energy is given to the ejected electron as kinetic energy.
- $hv = hv_0 + \frac{1}{2}mv_m^2$ (Einstein's equation of photoelectric emission)
- m is the mass of electron, v_m is the maximum velocity.
- Slope of potential energy vs frequency: Planck's constant.

 $h\nu = h\nu_0 + eV_0$ $\Rightarrow \nu = \nu_0 + \left(\frac{e}{h}\right)V_0$

Slope of the plot of incident frequency vs stopping potential is e/h

From here value of Planck's constant h is calculated as 6.55×10^{-34} Js