Algae

General Account

Presented By
Dr. Charmeswar
Barman Asst
Professor Goalpara
College

Declaration

The source of Data/Text used in the preparation of power point presentation were Google, E-Books, Books and Journals. It is used for teaching purpose only.

Structure of the algal cell

Prokaryotic cell

- They are found in Cyanophyta.
- Cell wall contains mucopeptide.
- DNA materials are concentrated in the
- centre and nuclear membrane is absent.
- Chloroplast, Mitochondria, Golgi
- bodies, Plastids and ER reticulum absent.
- Ribosomes are present.

mitosis.

Nuclear division doesnt take place by

WALL LAYER GRANULE DENSE SHEATH THYLAKOID

Fig. 2.51. Blue-green algae (Cyanobacteria).

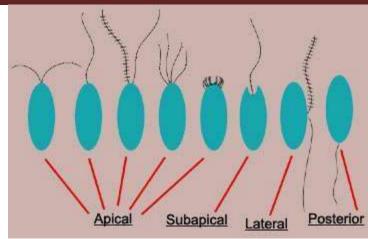
Cylindrospermum. Ultra structure of an akinete
(diagrammatic)

Slide prepared by Dr. D. Barman, Asst professor, Goalpara College

Eukaryotic cell

- Eukaryotic cell has the structure as in typical cell of higher plants.
- An intermediate form called mesokaryotic occurs in Dianophyceae which shows both eukaryotic (nucleus with nuclear membrane & chromosomes) and prokaryotic characters(basic proteins are absent).
- •Some do not has true cell wall Ex: euglena, gymnodinium & possess a membrane called pellicle around cytoplasm.
- Motile flagella possess a pigmented spot known as eyespot or stigma(swimming).
- Cell wall is with mixed carbohydrates and substances like alginic acid, fucoidin, fucin & hemicelluloses present.

Contractile vacuole Cell wal Starch Nucleus Vacuole apparatus Pyrenoid ochondrion Chloroplast Plasma membrane Slide prepared by Dr. D. Barman, Asst professor, Goalpara College


ALGAL FLAGELLA

- Found in all algae except Rhodophyceae.
- The main function is motility.
- They are of 2 types

- Tinsel is divided into 3 types
- **✓** Pantonematic-mastigonemes arranged in two opposite rows or radially
- ✓ Pantocronematic-Pantonematic flagellum with a terminal fibril
- ✓ Stichonematic-mastigonemes develop only on one side of the flagellum

Different Types of Flagella

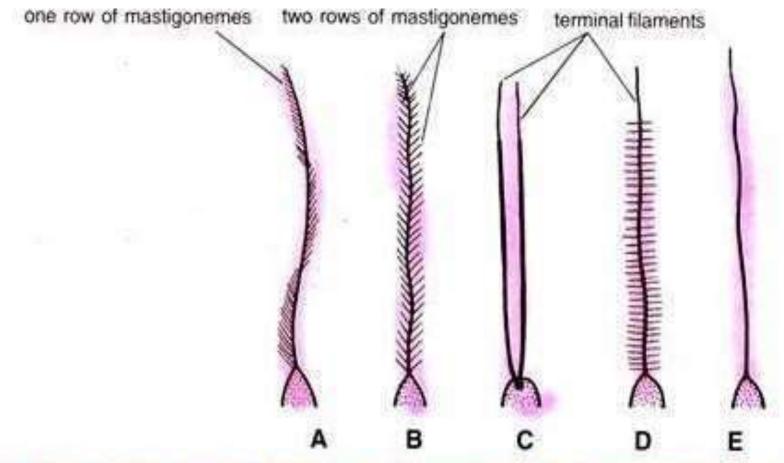


Fig. 23.4. Different types of flagella. A—Stichonematic; B—Pantonematic; C—Acronematic; D—Pentachronematic; E—Simple.

Slide prepared by Dr. D. Barman, Asst professor, Goalpara College

Pigment in Algae

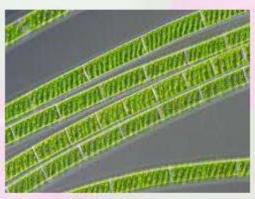
"Green is the prime color of the world, and that from which its loveliness arises..."

Pedro Calderon de la Barca

Pigmentation in algae:

- Algae show great diversity in pigmentation.
- Green, red, yellow & blue are found in marine and freshwater algae
- Different groups of algae have different and specific pigment composition.
- Pigments found in specialized plastids called chromophores
- Distribution pattern of pigments has great taxonomic significance
- Classification proposed by Fritsch is primarily based on algal pigmentation
- All major algal groups have at least one characteristic pigment in their cells

Pigmentation in algae:


■ Pigments in algae belong to **THREE** major categories based on their physical

and chemical properties.:

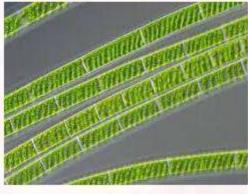
1. Chlorophylls

2. Carotenoids

3. Phycobilins

Green Algae

Blue Green Algae



(1). Chlorophylls:

- Chlorophylls are fat soluble green pigments
- They are chlorins which absorb blue region and reflect green light
- Chlorophylls are responsible for the green colour of algae and other higher plants.

Green Algae

(1). Chlorophylls:

- Seven different types of chlorophylls are reported in algae. They are:
 - 1. Chlorophyll-a $(C_{55}H_{72}O_5N_4Mg)$
 - 2. Chlorophyll-b $(C_{55}H_{70}O_6N_4Mg)$
 - 3. Chlorophyll-c1 ($C_{35}H_{30}O_5N_4Mg$)
 - 4. Chlorophyll-c2 $(C_{35}H_{28}O_5N_4Mg)$
 - 5. Chlorophyll-d $(C_{54}H_{70}O_6N_4Mg)$
 - 6. Chlorophyll-e $(C_{54}H_{70}O_6N_4Mg)$
 - 7. Chlorophyll- $f(C_{55}H_{70}O_6N_4Mg)$

(1). Chlorophylls:

Distribution of Different Chlorophylls in Different Algal Groups

- Chlorophyll-a : Present in all groups of algae
- Chlorophyll-b : Present in Chlorophyta (green algae)
- Chlorophyll-c : Present in Bacillariophyceae (diatoms)
- Chlorophyll-d : Present in the members of Rhodophyceae (red algae)
- Chlorophyll-e : Present in Xanthophyceae.
- Chlorophyll-f : Recently discovered chlorophyll from stromatolites

Function of Chlorophyll

Chlorophyll-A

- Used in oxygenic photosynthesis
- •Chlorophyll-A function as primary electron donor in the electron transport chain for photosynthesis .
- •Chlorophyll A also transfers resonance energy in the antenna complex, ending in the Reaction center where specific chlorophylls P680 and P700 are Located.

Chlorophyll-B

- Absorb energy that chlorophyll a does not Absorb.
- Functions as a Light-harvesting Antenna in Photosystem I.

S lide prepared by Dr. D. Barman, Asst professor, Goalpara College

(2). Carotenoids:

- Carotenoids are fat soluble yellow pigments
- Found in close association with chlorophylls.
- They protect chlorophylls from photo-damage
- Chemically carotenoids are tetraterpenoids
- Carotenoids are present in almost all algal groups
- Carotenoids with beta-ionone ring have Vitamin-A like activity
- All carotenoids are strong antioxidants

(2). Carotenoids:

- Two types of carotenoids are found in algae.
 - A. Carotenes
 - B. Xanthophylls

(2). Carotenoids:

(A). Carotenes:

- Carotenes are yellow coloured pigments
- They are unsaturated fat soluble hydrocarbons
- They do not contain oxygen
- They absorb blue and green light and transmit yellow and red light.
- Examples: α-carotene, β-carotene, and lycopene

(2). Carotenoids:

(B). Xanthophylls:

- Xanthophylls are also called as carotelos
- They are oxygen derivatives of carotenes.
- Example: lutein and zeaxanthin (both are responsible for the colour of egg yolk)

Xanthophyll: FUCOXANTHIN

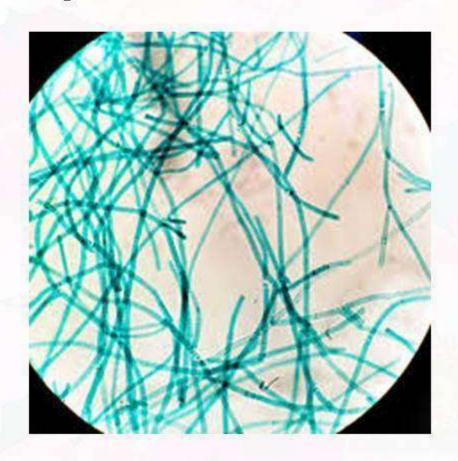
- •Fucoxanthin is a xanthophyll, which performs a limited form of photosynthesis in Brown Algae (Phaeophytes).
- It is responsible for the brown or olive-green colour of these algae.
- Molecular formula C42H58O6.
- Fucoxanthin absorbs red light to perform photosynthesis
- •The pigment is produced in abundant quantities by the following edible brown algae: Laminalia japonica, Undaria pinnatifida, Sargassum fulvellum etc
- It is a xanthophyll an oxygenated carotene, or plant pigment

S lide prepared by Dr. D. Barman, Asst professor, Goalpara College

Xanthophyll: Function

- Xanthophyll acts as an accessory light harvesting pigment.
- **❖** Have critical structural and functional role in the photosynthesis of plants and algae.
- Also serve to absorb and dissipate excess light energy,
 Or work as antioxidants.
- **❖**Xanthophyll may be involved in inhibiting lipid peroxidation.

Slide prepared by Dr. D. Barman, Asst professor, Goalpara College


(3). Phycobilins:

- Phycobilins are water soluble pigments
- Phycobilins are always bonded with some water soluble proteins called phycobiliproteins
- They are blue and red in colour
- They are present in Cyanophyceae and Red algae
- Phycobilins are usually found in organisms living in deep water for the efficient absorption of light
- All phycobilins are strongly fluorescent
- They emit orange or red light after fluorescence.

(3). Phycobilins:

- Two classes of phycobilins are present in algae.
 - A. Phycocyanins
 - B. Phycoerythrins

(3). Phycobilins:

(A). Phycocyanin:

- Phycocyanin are blue coloured pigments
- They absorb green, yellow and red light and transmit blue colour.
- Phycocyanins are the principal pigment of blue green algae.

E B C

Phycocyanin: Function

- □Phycocyanin (Pc) is a phycobiliprotein that has been recently reported to exhibit a variety of pharmacological properties. In this regard, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective effects have been experimentally attributed to Phycocyanin.
- ☐ It reduces carbon tetrachloride (CCl(4))-induced lipid peroxidation in vivo.
- □ Phycocyanin is related to the human pigment bilirubin, which is important to healthy liver function and digestion of amino acids. It imparts its anticancer property to Spirulina.
- ☐ Help in curing anemia

S lide prepared by Dr. D. Barman, Asst professor, Goalpara College

(3). Phycobilins:

(B). Phycoerythrin:

- Phycoerythrin are red coloured pigments
- They absorb blue green, green and yellow light and transmit red light.
- Phycoerythrin present abundantly in members of Rhodophyceae (red algae)

Phycoerythrin: Function

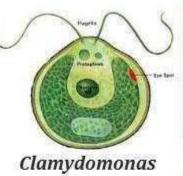
- □Phycoerythrin is an accessory pigment to the main chlorophyll pigments responsible for photosynthesis.

 □The light energy is captured by phycoerythrin and is then passed on to the reaction centre chlorophyll pair, most of the time via the phycobiliproteins phycocyanin and via allophycocyanin □R-Phycoerythrin and B-phycoerythrin are among the brightest
- fluorescent dyes ever identified

Distribution pattern of different pigments in different algal groups

	Algal Group	Major Pigments (Principal pigment)
1	Chlorophyceae (Green algae)	Chl-a, Chl-b, β-carotene, Xanthophylls
2	Xanthophyceae	Chl-a, β-carotene, Xanthophylls
3	Bacillariophyceae	Chl-a, Chl-c, β-carotene
4	Phaeophyceae (brown algae)	Chl-a, Chl-c1, Chl-c2, Fucoxanthin, β-carotene, Xanthophylls
5	Rhodophyceae (red algae)	Chl-a, Chl-d, β-carotene, Phycoerythrin and phycocyanin
6	Myxophyceae	Chl-a, β-carotene, Phycocyanin, phycoerythrin

ALGAE: GENERAL CHARACTERISTICS


Plastids in algae:

- Except Cyanophyceae (blue green algae, BGA) pigments in algae are found in membrane bound organelles called plastids
- In BGA, plastids are absent, pigments located at peripheral cytoplasm (chromoplasm)
- Plastids are two types:
 - Leuoplast: Colourless plastids
 - Chromoplast: Coloured plastids

ALGAE: GENERAL CHARACTERISTICS

Plastid forms in algae:

- Cup shaped: Clamydomonas, Volvox
- Discoid: Voucheria, Chara
- Girdle shaped: *Ulothrix*
- Reticulate: Oedogonium, Hydrodictyon, Cladophora
- Spiral: Spirogyra
- Stellate: Zygnema

ALGAE: GENERAL CHARACTERISTICS

Pyrenoids:

- They are proteinacious bodies present in chromatophores
- Considered as the organelle of synthesis and storage of starch
- In some Chlorophyceae pyrenoids are surrounded by starch grains
- Pyrenoids arise de-novo or by the division of pre existing pyrenoids
- Pyrenoids absent in blue green algae

FOOD RESERVES

- > Food materials accumulated as polysaccharides
- ➤ True starch-seen in two algal divisions chlorophyta and charophyta
- > Floridean starch- found in rhodophyta
- Laminarin- found in brown algae
- Paramylon- found in euglenoids
- > Leucosin-peculiar to xanthophyta, bacillariophyta & chrysophyta
- Fats occur as reserved food in appreciable amounts in the cells of xanthophyta, bacillariophyta & chrysophyta

S lide prepared by Dr. D. Barman, Asst professor, Goalpara College

Thanks for kind attention