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Abstract.Langmuir monolayers of Bovine serum albumin (BSA) are formed at the air-water interface nearly at (pH ≈ 
5.0) and below (pH ≈ 4.0) the isoelectric point (pI ≈ 4.8) of BSA. The thin films are deposited on Si (001) substrates for 
different physiochemical conditions using Langmuir–Blodgett method. Photoluminescence spectroscopy is used to study 
the optical emission behavior of deposited BSA thin films. In-plane morphology and out-of-plane structure are obtained 
from the atomic force microscopy and X-ray reflectivity respectively from the deposited protein thin films. Below the 
isoelectric point of BSA, i.e., when BSA possesses some net surface charge, it exhibits reversible structural and optical 
emission behaviors. But at isoelectric point, i.e., when net surface charge on BSA is nearly zero the reversibility 
behaviour ceases. 

INTRODUCTION 

Proteins have gained lots of attention in the field of material science as its properties can be altered or tuned by 
varying the external physiochemical conditions [1]. Proteins are considered as unique biopolymers as they display 
intrinsic fluorescence [2]. The amino acids responsible for the proteins fluorescence nature are tryptophan, tyrosine 
and phenylalanine as they are capable of absorbing and emitting light [3]. Among the three amino acid residues, 
tryptophan emission shows most intense fluorescence and also it is highly correlated with its local environment. 
Physiochemical parameters such as pH condition, substrate binding, ionic environment, solvent polarity, etc. 
interfere with the microenvironment surrounding the tryptophan residues and hence it shows change in the protein 
emission [3]. Studies have shown that fluorescence emission from the tryptophan modifies due to the interaction of 
the protein molecules with different types of compounds [4-6]. And any conformational change in protein structure 
can be indirectly monitored through the fluorescence emission spectra [7]. 

Protein adsorption on solid surfaces has wide range of biomedical and industrial applications such as food 
processing, drug delivery and bio molecular devices [8]. Protein molecules in thin film configuration are arranged in 
a two-dimensional (2D) sheet of interacting particles with properties such as enhanced thermal and chemical 
stabilities [9]. Although there are numerous approaches to prepare protein thin films, but the Langmuir-Blodgett 
(LB) technique is one of the promising tools for building protein thin film as it can precisely control many 
parameters having high degree of order on desired substrates. Bovine serum albumin (BSA) is a globular protein, 
has two tryptophan residues and it has an oblate ellipsoidal shape of dimensions 39Å × 39Å × 9Å [10]. Isoelectric 
point of BSA is ≈ 4.8 [9], therefore, above and below the isoelectric point it possesses a net negative and positive 
surface charge respectively. It is well known that BSA forms monolayer at air-water interface but the surface 
pressure dependent structures and corresponding optical behavior is yet to be explored. 

In this article we have examined the structural and optical behaviour of BSA thin film at and below the 
isoelectric point of BSA under different surface pressure and monolayer compression conditions. 
Photoluminescence spectroscopy is used to study the optical properties of BSA thin films. In-plane morphology and 
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Fluorescence emission spectra of BSA thin film at pH ≈ 4.0 and 5.0 are shown in Fig. 3(a) and (b) respectively. 

The emission peak is observed in the range between 335 to 340 nm for all the BSA thin films. Fig. 3(a) shows that 
the emission spectra for lower surface pressure (5 mN/m) in nearly same for first and second compression, however 
there is a slight increase in the intensity of the emission spectra for higher surface pressure. On the other hand, for 
pH ≈ 5.0, an increase in the peak intensity is observed at lower surface pressure during the first and second 
compression of the film. Moreover, at higher surface pressure the peak intensity significantly rises obtaining roughly 
twice the value to that of the lower pressure counterparts. These results too come in agreement with the XRR and 
AFM results. Hence at pH ≈ 4.0 when BSA acquires positive surface charge, under sufficient compression, it 
undergoes some change in its structure, however, due to the electrostatic-electrostatic interaction BSA restores to its 
initial state. But as the surface charge is neutral in case of pH ≈ 5.0, the molecules could not attain its initial 
organization, once the molecule gets structurally transformed under external surface pressure. Thus, BSA structural 
and optical behaviors in thin film configuration are dependent on the subphase pH as well as on the surface pressure 
conditions. 

CONCLUSIONS 

Langmuir thin films of BSA are studied at two different subphase pH conditions, at and below the isoelectric 
point of BSA, i.e., at pH ≈ 5.0 and 4.0 respectively. Protein molecules in thin film configuration show reversible 
structural behaviour in presence of net surface charge on the molecule due to the electrostatic interaction. The 
optical emission behaviour also dictates the similar behaviour. However, this behavior vanishes for the neutral 
surface charge condition of the BSA molecules. Thus, BSA thin film displays structural and optical emission 
behaviours depending on the surface pressure and subphase pH conditions. 

ACKNOWLEDGMENT 

The work is supported by Department of Science and Technology (DST), Nano Mission, India (Grant 
No.SR/NM/NS-1035/2013(G)).B.K.S. acknowledges Council for Scientific and Industrial 
Research (CSIR), Govt. of India for CSIR-SRF fellowship (Grant No: 09/ 
835(0027)/2019-EMR-I). 

 

REFERENCES 

1. A. M. Lesk, Introduction to Protein Science: Architecture, Function and Genomics, (Oxford University Press, 
New York, 2004). 

2. J.R. Lakowicz, Principle of Fluorescence Spectroscopy, (Springer Science and Business Media, USA, 2006). 
3. A. B. T. Ghisaidoobe, S. J. Chung, Int. J. Mol. Sci. 15, 22518-22538 (2014). 
4. S. Bi, D. Song, Y. Tian, X. Zhou, Z. Liu, H. Zhang, Spectrochim. Acta A61, 629-636 (2005).  
5. N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, F. Bussolino, Dyes Pigment 

80, 307-313 (2009).  
6. S. M. T. Shaikh, J. Seetharamappa, S. Ashoka, P. B. Kandagal, Dyes Pigm73, 211-216 (2007). 
7. H. D. Wang, C. H. Niu, Q. Yang, I. Badea, Nanotechnology 22, 145703-1-145703-10 (2011). 
8. Y. Lvov and H. Mohwald, “Protein Architecture: Interfacing Molecular Assemblies and Immobilization 

Biotechnology”, (Marcel Dekker, New York, 1999). 
9. E. Pechkova, P. Innocenzi, T. Kidchob, L. Gaspa and C. Nicolini, Langmuir 23, 1147-1151 (2007). 
10. S. Kundu, K. Das, V.K. Aswal, Chem. Phys. Lett. 578, 115-119 (2013). 
 

 

 

030266-4

https://doi.org/10.3390/ijms151222518
https://doi.org/10.1016/j.dyepig.2008.08.006
https://doi.org/10.1088/0957-4484/22/14/145703
https://doi.org/10.1021/la061970o
https://doi.org/10.1016/j.cplett.2013.05.062
https://doi.org/10.1016/j.saa.2004.05.028

