PROGRAMME OUTCOMES_GOALPARA COLLEGE_CHEMISTRY

DEPARTMENT OF CHEMISTRY

Goalpara College Course outcomes: B.Sc. in Chemistry

Chemistry Honours (CBCS): <u>https://goalparacollege.ac.in/upload/dept_syllabus/1644055735.pdf</u> Chemistry (Regular) CBCS: <u>https://goalparacollege.ac.in/upload/dept_syllabus/1644055784.pdf</u> Chemistry Major & General (Non-CBCS): <u>https://goalparacollege.ac.in/upload/dept_syllabus/1646722822.pdf</u>

The expected outcomes of the courses provided by the Department of Chemistry, Goalpara College, are listed below:

- 1. The course will definitely improve the skill of the students. The students will learn different techniques and standard operating procedures.
- 2. It will enhance the quality of the learning and teaching processes to inspire original thinking through concrete exposure to experimental work and participation in different innovative courses in other institutes. Consequently, it will encourage networking and bonding with neighbouring institutions.
- 3. Students will be familiarized with modern techniques, processes and terminologies of decent equipments and software in chemistry.
- 4. The course will certainly strengthen the academic and physical infrastructure with advanced learning techniques.
- 5. The course will create an awareness of the impact of chemistry on the environment, society, and development outside the scientific community with specialized training programmes which can illustrate versatile applications of Chemistry with significant implications on the students and the faculties,.
- 6. The course will definitely increase the potential of core instrumentation resources by procuring new equipment and obviously will upgrade the existing facilities.
- 7. The course will help to generate the green route for chemical reaction for sustainable development which will offer a direct application of Chemistry towards society, and environment.

- 8. The course will help to learn how to demonstrate, solve and understand the major concepts in all disciplines of chemistry.
- 9. The course will assist to inculcate the scientific temperament in the students and outside the scientific community.
- 10. On completion of the course, students should be able to solve the problem and also think methodically, independently and can draw a logical conclusion.

Course Outcomes

B.Sc. 1st Semester (Honours)

Course: Inorganic Chemistry-I

Course Code: CHE-HC-1016

SL No.	Course Outcome	Bloom's level
1	Clear understanding of the concepts related to atomic and	Understand
	molecular structure, and basic quantum chemistry treatment.	
2	Clear understanding of the concepts related to atomic and	Understand
	molecular structure, and basic quantum chemistry treatment.	
3	Comprehensible idea about periodic classification of elements in	Remember
	the periodic table and changes in properties along the periods and	Understand
	groups.	
4	Basic idea on chemical bonding including ionic bond, covalent	Understand
	bond, metallic bond, weak chemical forces and redox behavior of	
	chemical species.	
5	Laboratory skills of basic quantitative analytical techniques	Apply
	related to volumetric titrations through acid-base and redox	Analyse
	reactions.	

Course: Physical Chemistry-I

SL No.	Course Outcome	Bloom's level
1	The kinetic theory of gases, ideal gas and real gases. In this chapter they will learn the most important physical chemistry equation "the equation of state". They will earn to construct a model of the departures of real gases from perfect gases and learn to construct, interpret and use of van der Waals equation of state.	Understand
2	In liquid state unit, the students are expected to learn the qualitative treatment of the structure of liquid along with the physical properties of liquid, <i>viz.</i> vapour pressure, surface tension and viscosity.	Understand
3	In the molecular and crystal symmetry unit, they will be introduced to the elementary idea of symmetry which will be	

	useful to understand solid state chemistry and group theory in some higher courses. In solid state unit the students will earn the	
	basic solid-state chemistry application of X-ray crystallography	
	for the determination of some very simple crystal structures.	
4	The students will also learn another important topic, i.e. ionic equilibrium. In this chapter, they will earn about ionic equilibria involving dissociation of weak acids and weak bases in aqueous solutions, dissociation of sparingly soluble salts in aqueous solutions, dissociation of water, p ^H -scale and also about the importance of buffer solution.	Understand
5	In the lab, on successful completion of this course, students will be able to measure the surface tension and viscosity of a given solution using certain method specified in the course and to study the variation of the both property of the solution with concentration of the solute. They will also learn the indexing of a given power diffraction pattern of a cubic crystalline system, about buffer solution, preparation of buffer solution, p ^H metric and to measure the dissociation constant of a weak acid.	Apply Analyse

B.Sc. 1st Semester (Generic/Regular Chemistry)

Course: Chemistry-1

Course Code: CHE-RC/HG-1016

SL No.	Course Outcome	Bloom's level
1	The students will learn the atomic structure through basic	Understand
	concept of quantum mechanics. They will understand the	
	chemical bonding through VB and MO approaches.	
2	In organic part, the students are expected to learn basic ideas	Understand
	used in organic chemistry, stereochemistry, functional groups,	
	alkanes, alkenes and alkynes.	
3	In the laboratory, students will have hands on experience on	Apply
	volumetric analysis of some inorganic salts and metal ions. In	Analyse
	organic chemistry part, students will learn to detect extra element	
	present in the given organic sample through systematic analysis.	
	They will also learn to carry out chromatographic separation of a	
	given organic mixture.	

Course Outcomes

B.Sc. 2nd Semester (Honours)

Course: Organic Chemistry I

Course Code: CHE-HC-2016

SL No.	Course Outcome	Bloom's level
1	To identify different classes of organic compounds and learn	Remember
1	their nomenclature.	
2	To identify different types of reagents and reaction intermediates.	Remember
3	To understand the shape of the molecules using hybridisation	Understand
	concept.	
4	To explain/analyze their reactivity, mechanism based on different	Understand
	electronic displacement factors in addition to their stereo chemical	
	aspects.	
5	In lab course, students will have hands on experience on checking	Apply
	the calibration of the thermometer, purification of organic	Analyse
	compounds by crystallisation, checking of the purity of organic	
	compound by measuring melting point, determination of boiling	
	point of liquid compounds, chromatographic separation of organic	
	mixtures.	

Course: Physical Chemistry II

SL No.	Course Outcome	Bloom's level
1	In this course the students are expected to learn laws of	Understand
1	thermodynamics, thermochemistry, thermodynamic functions,	
	relations between thermodynamic properties, Gibbs Helmholtz	
	equation, Maxwell relations etc.	
2	The students are expected to learn partial molar quantities,	Understand
	chemical equilibrium, solutions and colligative properties.	
3	After completion of this course, the students will be able to	Understand
	understand the chemical systems from thermodynamic point of	
	view.	
4	In laboratory, on successful completion of this course students	Apply
	will have hand on experience on determination of heat capacity of	Analyse
	a calorimeter, enthalpy of neutralization, enthalpy of ionization,	
	integral enthalpy, enthalpy of hydration, basicity/protocity of a	
	polyprotic acid by the thermochemical method and study of	
	solubility of benzoic acid in water.	

B.Sc. 2nd Semester (Generic/Regular Chemistry)

Course: Chemistry-2

Course Code: CHE-RC/HG-2016

SL No.	Course Outcome	Bloom's level
1	The students will learn periodic properties of main group elements and transition elements.	Understand
2	They will also learn the crystal field theory in coordination chemistry unit.	Understand
3	In physical chemistry part, the students are expected to learn kinetic theory of gases, ideal gases and real gases, surface tension, viscosity, basic solid-state chemistry and chemical kinetics	Understand
4	In laboratory, working through this course, students are expected to develop their skills and knowledge for semi-micro qualitative analysis of at least mixture of four ionic species and quantitative measurement of various ions in a given solution. They will also learn to measure surface tension and viscosity of a liquid, kinetics of certain reactions.	Apply Analyse

Course Outcomes

B.Sc. 3rd Semester (Honours)

Course: Inorganic Chemistry-II

SL No.	Course Outcome	Bloom's level
1	To apply theoretical principles of redox chemistry in the	Understand
	understanding of metallurgical processes.	
2	To identify the variety of s and p-block compounds and	Remember
	comprehend their preparation, structure, bonding, properties and	
	uses.	
3	To explain the use of terms Hard and Soft in relation to metal ions	Understand
	and ligands terms of hard and soft interactions and discuss the	
	stability of complexes.	
4	To explain chemistry of noble gases and their compounds;	Remember
	application of VSEPR theory in explaining structure and bonding	
	to know about Inorganic polymers and their uses.	
5	Laboratory experiments in this course will boost their quantitative	Apply
	estimation skills and introduce the students to preparative methods	Analyse
	in inorganic chemistry.	

Course: Organic Chemistry-II

Course Code: CHE-HC-3026

SL No.	Course Outcome	Bloom's level
1	To learn and differentiate between various organic functional	Remember
	groups and method of their synthesis.	
2	To classify organic compounds in terms of their functional	Remember
	groups and reactivity.	
3	To explain, analyse and design transformations between different	Understand
	functional groups.	
4	To learn about the different reaction mechanism involves in the	Understand
	given functional group transformations.	
5	In laboratory students will have hands on experience on test of	Apply
	functional groups present in a given organic sample by systematic	Analyse
	analysis, preparation of some organic compounds using	
	conventional method or green approach.	

Course: Physical Chemistry-III

SL No.	Course Outcome	Bloom's level
1	Phase equilibrium and its application in some specific systems.	Understand
	They will also learn the most important thermodynamic property	
	"chemical potential", the Clausius-Clapeyron equation phase	
	diagram for one component system, solid-liquid equilibria	
	involving eutectic, congruent and incongruent melting points etc.	
2	They will learn rate laws of chemical transformation,	Understand
	experimental methods of rate law determination, steady state	
	approximation, rate determining state approximation etc.	
3	Students will be able to understand different types of surface	Understand
	adsorption processes and basics of catalysis including enzyme	
	catalysis, acid base catalysis and particle size effect on catalysis.	
4	To learn about the different reaction mechanism involves in the	Understand
	given functional group transformations.	
5	In laboratory, students will be able to conduct the physical	Apply
	experiments of phase eqilibria viz., construction of phase diagram,	Analyse
	determination of critical solution temperature and composition of	
	the phenol-water system, study the effect of impurities on critical	
	solution temperature and composition of the phenol-water system,	
	determination of distribution coefficient, study the equilibrium	
	and kinetic of a reaction.	
	They will also able to study a given absorption isotherm.	

B.Sc. 3rd Semester (Generic/Regular Chemistry)

Course: Chemistry-3

Course Code: CHE-RC/HG-3016

SL No.	Course Outcome	Bloom's level
1	To understand the chemical system from thermodynamic points	Understand
	of view.	
2	They will also learn two very important topics in chemistry-	Understand
	chemical equilibrium and ionic equilibrium.	
3	The students are expected to learn various classes of organic	Remember
	molecules-alkyl halides, aryl halides, alcohols, phenols, ethers,	
	aldehydes and ketones.	
4	In laboratory, students will learn the practical applications of	Apply
	thermochemistry and ionic equilibria. The students will be taught	Analyse
	to handle p ^H meter.	
	Purification of organic compounds by crystallization and organic	
	preparation techniques will be learned.	

Skill Enhancement Course (For 3rd Semester)

Course: Basic Analytical Chemistry

Course Code: CHE-SE-3034

SL No.	Course Outcome	Bloom's level
1	Students shall be able to explain the basic principles of chemical	Apply
	analysis.	
2	They will be able to design/implement micro scale and semimicro experiments, record, interpret and analyze soil, water, food products cosmetics etc. via different techniques such as Paper chromatography, TLC etc.	Apply

Course Outcomes

B.Sc. 4th Semester (Honours)

Course: Inorganic Chemistry-III

SL No.	Course Outcome	Bloom's level
1	Name coordination compounds according to IUPAC, explain bonding in this class of compounds, understand their various properties in terms of CFSE and predict reactivity, d-orbital splitting in complexes, chelate effect, polynuclear, labile and inert complexes.	Remember
2	Understanding the nomenclature of coordination compounds/	Remember
	complexes, Molecular orbital theory, d-orbital splitting in	

tetrahedral, octahedral, square planar complexes, chelate effects.	
To appreciate the general trends in the properties of transition	Understand
elements in the periodic table and identify differences among the	
rows, and chemistry of first raw transition elements.	
Understanding the separation of Lanthanides and Actinides, its	Remember
colour, spectra and magnetic behaviour.	
Understanding the transition metals stability in reactions, origin of	Understand
colour and magnetic properties.	
Understanding the bioinorganic chemistry of metal ions in	Remember
biological systems, Hemoglobin-storage and transfer of iron, Na/K	
pump, Carbonic anhydrase and Carboxypeptidase, about trace	
metals.	
Toxicity of various metals and mechanism of metal-biological	Remember
interactions, use of chelating agents in medicine.	
In laboratory, through the experiments, students will be able to	Apply
prepare, estimate or separate metal complexes/compounds but also	Analyse
will be able to design experiments independently which they	
should be able to apply if and when required.	
	 elements in the periodic table and identify differences among the rows, and chemistry of first raw transition elements. Understanding the separation of Lanthanides and Actinides, its colour, spectra and magnetic behaviour. Understanding the transition metals stability in reactions, origin of colour and magnetic properties. Understanding the bioinorganic chemistry of metal ions in biological systems, Hemoglobin-storage and transfer of iron, Na/K pump, Carbonic anhydrase and Carboxypeptidase, about trace metals. Toxicity of various metals and mechanism of metal-biological interactions, use of chelating agents in medicine. In laboratory, through the experiments, students will be able to prepare, estimate or separate metal complexes/compounds but also will be able to design experiments independently which they

Course: Organic Chemistry-III

Course Code: CHE-HC-4026

SL No.	Course Outcome	Bloom's level
1	To identify and classify different types of N-based derivatives,	Remember
	alkaloids, terpenes, heterocyclic compounds and polynuclear hydrocarbons.	
2	To explain their structure and reactivity.	Understand
3	To critically examine their synthesis and reaction mechanisms.	Understand
	About the synthetic applications of diazonium salts.	
4	To identify the natural source of alkaloids and terpenes and	Remember
	systematic elucidation of their structure.	
5	In laboratory, students are expected to learn to detect the extra	Apply
	elements and function groups present in a given organic sample.	Analyse

Course: Physical Chemistry-IV

SL No.	Course Outcome	Bloom's level
1	Students will learn theories of conductance and electrochemistry.	Understand
2	Students will also understand some very important topics such as solubility and solubility products, ionic products of water, conductometric titrations etc.	Understand
3	The students are also expected to understand the various parts of electrochemical cells along with Faraday's Laws of electrolysis.	Understand
4	The students will also gain basic theoretical idea of electrical &	Understand

	magnetic properties of atoms and molecules.	
5	In laboratory, the student will be able to determine a cell constant, equivalent conductance, degree of dissociation and dissociation constant of a weak acid, to perform various conductometric and potentiometric acid-base titrations.	Analyse

B.Sc. 4th Semester (Generic/Regular Chemistry)

Course: Chemistry-4

Course Code: CHE-RC/HG-4016

SL No.	Course Outcome	Bloom's level
1	The students learn solutions, phase rule and its application in	Remember
	specific cases.	
2	Understanding the nomenclature of coordination compounds/	Remember
	complexes, Molecular orbital theory, d-orbital splitting in	
	tetrahedral, octahedral, square planar complexes, chelate effects.	
3	They will be taught basics of conductance and electrochemistry.	Understand
4	Students will also learn some important topics of organic and	Remember
	biochemistry- carboxylic acids, amines, amino acids, peptides,	
	proteins and carbohydrates.	
5	Synthesis and reaction mechanisms of organic compounds	Remeber
	containing –COOH, -NH ₂ functional groups will be studied.	
6	In laboratory, the students will learn the experimentation of	Apply
	distribution law, phase equilibria, conductance, and potentimetry.	Analyse
7	They will also learn systematic qualitative analysis of Organic	Apply
	Compounds possessing monofunctional groups (-COOH,	Analyse
	phenolic, aldehydic, ketonic, amide, nitro, amines) and	,
	preparation of derivatives.	
8	They will acquire knowledge regarding some important	Apply
-	experiments like separation of amino acids by paper	
	chromatography, determination of the saponification value of an	
	oil/fat, extraction of DNA from onion/ cauliflower, etc.	

Skill Enhancement Course (For 4th Semester)

Course: Green Methods in Chemistry

Course Code: CHE-SE-4024

SL No.	Course Outcome	Bloom's level
1	Understand importance of green methods in chemistry.	Understand
2	They will be able describe and evaluate chemical products and processes from environmental perspective, define and propose	Apply

	sustainable solutions and critically assess the methods for waste reduction and recycling.	
3	They will be able to use tools of Green chemistry, and will be	Apply
	made familiar with twelve principles of Green Chemistry.	

Course Outcomes

B.Sc. 5th Semester (Honours)

Course: Organic Chemistry-IV

Course Code: CHE-HC-5016

SL No.	Course Outcome	Bloom's level
1	Students will be able to explain/describe the important features of	Remember
	nucleic acids, amino acids and enzymes and develop their ability	
	to examine their properties and applications.	
2	Students will have concept of Energy in Biosystems.	Remember
3	Students will become familiar with Pharmaceutical Compounds:	Remember
	Structure and Importance.	
4	In laboratory, students will learn to analyses sensitive bio	Apply
	compounds.	

Course: Physical Chemistry-V

SL No.	Course Outcome	Bloom's level
1	The students are expected to understand the application of	Understand
	quantum mechanics in some simple chemical systems such as	
	hydrogen atom or hydrogen like ions.	
2	The students will also learn chemical bonding in some simple	Understand
	molecular systems.	
3	Students will also be able to understand the basics of various kinds	Understand
	of spectroscopic techniques and photochemistry.	Apply
4	In laboratory, they will learn to handle UV-vis spectroscopic and	Apply
	Colourimetry tool.	Analyse

Discipline Specific Elective (DSE) [For 5th Semester]

Course: Analytical Methods in Chemistry

Course Code: CHE-HE-5026

SL No.	Course Outcome	Bloom's level
1	Students will have theoretical understanding about choice of	Understand
	various analytical techniques used for qualitative and quantitative	
	characterization of samples.	
2	Students will have theoretical understanding of Optical methods	Understand
	of analysis such as UV-Visible Spectrometry, Infrared	Apply
	Spectroscopy, Flame Atomic Absorption and Emission	
	Spectrometry etc.	
3	Students will also have idea of electroanalytical method, different	Understand
	Separation techniques, thermal methods of analysis, etc.	Apply
4	At the same time through the experiments, students will gain	Apply
	hands on experience of the discussed techniques. This will enable	Analyse
	students to take judicious decisions while analyzing different	
	samples.	

Course: Instrumental Methods of Chemical Analysis

Course code: CHE-HE-5066

SL No.	Course Outcome	Bloom's level
1	Students shall be able to explain the theoretical basis of different analytical techniques, such as Molecular spectroscopy, separation techniques, elemental analysis etc.	Understand Apply
2	Students will also be able to identify the experimental requirements and compare/analyze the data/results thereof.	Understand Apply Analyse

Course Outcomes

B.Sc. 6th Semester (Honours)

Course: Inorganic Chemistry-IV

SL No.	Course Outcome	Bloom's level
1	The students will be expected to learn about how ligand	Understand
	substitution and redox reactions take place in coordination	
	complexes.	
2	Students will also learn about organometallic compounds,	Remember
	comprehend their bonding, stability, reactivity and uses.	
3	They will be familiar with the variety of catalysts based on	Remember

PROGRAMME OUTCOMES_GOALPARA COLLEGE_CHEMISTRY

	transition metals and their application in industry.	
4	On successful completion, students in general will be able to appreciate the use of concepts like solubility product, common ion effect, pH etc. in analysis of ions and how a clever design of reactions, it is possible to identify the components in a mixture.	Understand
5	With the experiments related to coordination compound synthesis, calculation of 10Dq, controlling factors etc. will make the students appreciate the concepts of theory in experiments.	

Course: Organic Chemistry-V

Course Code: CHE-HC-6026

SL No.	Course Outcome	Bloom's level
1	Students will be able to explain/describe basic principles of	Understand
	different spectroscopic techniques such as UV Spectroscopy, IR	Apply
	Spectroscopy, NMR Spectroscopy and Electron Spin Resonance	
	(ESR) spectroscopy.	
2	Students will also know the importance of those techniques in	Understand
	chemical/organic analysis.	Apply
3	Students shall be able to classify/identify/critically examine	Understand
	carbohydrates, polymers and dye materials.	Apply

Discipline Specific Elective (DSE) [For 6th Semester]

Course: Green Chemistry

Course code: CHE-HE-6016

SL No.	Course Outcome	Bloom's level
1	Apart from introducing learners to the principles of green	Understand
	chemistry, this course will make them conversant with applications of green chemistry to organic synthesis.	Apply
2	Students will also be prepared for taking up entry level jobs in the chemical industry. They also will have the option of studying further in the area.	Understand Apply

Course: Research Methodology for Chemistry

SL No.	Course Outcome	Bloom's level
1	Students will be given training on scientific literature review.	Understand
		Apply
2	Students will be able to write scientific research paper.	Understand

		Apply
3	Students should be able to construct a rational research proposal to generate fruitful output in terms of publications and patents in the	
	field of chemical sciences.	

Course Outcome of Non-CBCS Course

(Current semesters in practice)

Course Outcomes

B.Sc. 5th Semester (Honours)

Course: Quantum Chemistry

Course Code: PAPER M 501

SL No.	Course Outcome	Bloom's level
1	To account for the basic principles and concepts of quantum	Understand
	mechanics, solve the Schrödinger equation for model systems of	
	relevance within chemistry and physics.	
2	To describe many-electron atoms with the independent particle	Understand
	model, describe the structure of the periodic system and the	
	connections between the properties of the elements and their	
	electron configurations.	
3	To describe the chemical bonding quantum mechanically with	Understand
	molecular orbital theory, describe the bases behind interaction	
	between light and matter.	

Course: Physical Chemistry

SL No.	Course Outcome	Bloom's level
1	In the reaction dynamics chapter, they will learn details of what	Understand
	happens to molecules at the climax of reaction encounter,	
	collision theory, transition state theory and their application to	
	derive rate laws.	
2	In the photochemistry chapter they will earn the various	Understand
	mechanisms involved in photochemical reactions along with the	
	concept of fluorescence, phosphorescence and consequences of	
	light absorption with the help of Jablonski diagram.	
3	In the Phase equilibrium they will earn Phase equilibrium and its	Understand
	application in some specific systems. They will also learn the most	
	important thermodynamic property "chemical potential", the	

	Clausius-Clapeyron equation phase diagram for one component system, solid-liquid equilibria involving eutectic, congruent and incongruent melting points etc.	
4	In the surface chemistry they will learn various adsorption processes, adsorption isotherms, determination of surface area and catalytic activity at the surface.	

Course: Organic Chemistry

Course Code: PAPER M 503

SL No.	Course Outcome	Bloom's level
1	To change the connectivity of an existing organic backbone by	Understand
	using reactions that result in skeletal rearrangements.	
2	To identify different types of oxidising and reducing agents as well as the properties of the reagents.	Remember
3	To make use of those different reagents in organic synthesis and they can do it in different pathways.	Understand
4	To identify different pericyclic reactions and to predict the condition for allowance of pericyclic reactions.	Understand
5	To draw the MOs for polyenes, identify the FMO's (HOMO &LUMO) participating in the pericyclic reaction & explain the importance of MO's in pericyclic reactions.	Understand
6	To predict the products & the stereochemistry of the product of the Pericyclic reactions.	Understand
7	To explain the structure, bonding and physical and chemical properties of polynuclear aromatic hydrocarbons and heterocyclic compounds.	Remember
8	To critically examine their synthesis and reaction mechanisms.	Remember
9	To learn the synthetic method, physical properties and reactivity of organic nitro and amino compounds, organo S and organo P compounds.	Remember
10	To recognize the active methylene compounds, to learn the method of their synthesis and applications in organic synthesis.	Understand

Course: Inorganic Chemistry

SL No.	Course Outcome	Bloom's level
1	The symmetry elements and operations, point group	Understand
	classification, Symmetry of octahedron, tetrahedron and square planar complexes.	Apply
2	Structure and symmetry of inorganic compounds, shape and	Understand
	symmetry of s, p and d-orbitals.	
3	The concepts of metal ligand bonding in transition complex	Understand
	compounds, the thermodynamics and kinetic aspects of metal	

	complexes.	
4	To identify the basic concept, terms and importance and the chemistry of organometallic compounds, homogeneous hydrogenation and carbonyls, the 18-electron rule and its violation.	Understand
5	To learn about the common organometallic reactions and to be able to draw reasonable reaction mechanisms.	Remember
6	Be able to use knowledge about structure and bonding issues to understand the stability and reactivity of simple organometallic complexes.	Understand
7	To understand the importance of Na/K salts and calciumin biology.	Remember
8	To understand the bioinorganic chemistry of haemoglobin, myoglobin, etc.	Remember
9	To recognize role of porphyrins ring in haemoglobin.	Remember

Course name: Practical

Course Code: PAPER M 505

SL No.	Course Outcome	Bloom's level
1	Students are expected to learn the utilization of quantitative estimation of inorganic ions by volumetry, complexometry, gravimetry, colorimetry, redox and precipitation methods in laboratory.	Apply Analyse
2	They are also expected to learn the chromatographic method of separation of cations by paper/TLC.	Apply Analyse

Course: Practical

Course Code: PAPER M 506

SL No.	Course Outcome	Bloom's level
1	In this course, students are expected to learn to prepare organic	Apply
	compounds and the quantitative organic analysis.	Analyse

B.Sc. 5th Semester (General Chemistry)

SL No.	Course Outcome	Bloom's level
1	The student should be able to account for the Bonding in solid:	Understand
	Band theory.	
2	Electronic properties of solids relating electrical conductivity, conductors, insulators semiconductors, Intrinsic and extrinsic semiconductors.	Understand

3	Ferroelectric	and	Piezoelectric	material	and	preparation	of	Understand
	electronic gra	de pu	re silicon.					

Course: Practical

Course Code: PAPER E 502

SL No.	Course Outcome	Bloom's level
1	In this course, students are expected to learn to prepare different	Apply
	compounds and their quantitative analysis.	Analyse

Course Outcomes

B.Sc. 6th Semester (Honours)

Course: Spectroscopy

Course Code: PAPER M 601

SL No.	Course Outcome	Bloom's level
1	Learn the most common spectroscopic methods and their	Understand
	possibilities and limitations for studies of molecules in the IR and	Apply
	UV/Vis, MW, IR and UV-Vis regions.	
2	Calculate different molecular parameters for simple molecules	Understand
	from their NMR, IR, Raman and UV-Vis spectra.	Apply
3	Account for how spectroscopic methods can be used to determine molecular structures, with focus on the identification of	Understand Apply
	characteristic groups in polyatomic molecules on the basis of their IR and UV-Vis spectra.	11 5
4	Account for different types of electronic transitions and de- excitation process and interpret absorption and fluorescence spectra.	Understand Apply
5	Use UV-Vis absorption and emission spectrometers and be able to account for their function.	Understand Apply

Course: Physical Chemistry

SL No.	Course Outcome	Bloom's level
1	In this course the students will learn about solids state,	Understand
	macromolecules and colloids, statistical thermodynamics and	
	data analysis.	

Course: Organic Chemistry

Course: PAPER M 603

SL No.	Course Outcome	Bloom's level
1	Have deep understanding on the theory and principle involved in the photochemical and photo physical processes.	Remember
2	Have understanding on the differences between photoreaction and thermal reaction, characteristics of photochemistry, application of photochemical reactions, fundamental laws of photochemistry, efficiency in photochemical reactions, significance of Jabolonski diagram.	Understand
3	Have clear understanding of fibre and polymer, the classification of polymers based on the mechanism of polymerization reaction, based on properties of the polymer and based on the source, their preparation, properties and applications.	Remember
4	Have a specialized knowledge on the structure of biopolymers have and their importance.	Remember
5	Have understanding on the structures and purposes of basic components of prokaryotic and eukaryotic cells.	Remember
6	Have good knowledge on concentration gradient, ion transport across the cell membrane.	Understand
7	Have clear understanding on the catalytic role of enzymes, importance of metalloenzyme, coenzymes and vitamins.	Remember Understand
8	Able to draw the structure of carbohydrates, lipids, proteins, amino acids, haemoglobin and myoglobin and have knowledge on their functions in biological systems.	Remember
9	Have learned the structure of nucleotides, nucleocides, DNA, RNA and the hydrogen bondings of purines and pyrimidines bases in their structure.	Remember
10	Have clear understanding on the genetic organization of mammalian genome and functions of DNA in the synthesis of RNAs and proteins. Able to recognize and categorise the classes of natural product.	Understand
11	Have good knowledge on the extraction, separation, isolation and structure elucidation of the natural products. Students must also have understanding on the importance of those natural products.	Remember
12	Have learnt to draw the structure of the carbohydrates, to predict the configuration carbohydrate molecules and knowledge on the methods of their synthesis.	Remember
13	Have deep good understanding of the chemistry of drugs with respect to their pharmacological activity, the drug metabolic pathways, adverse effect and therapeutic value of drugs, knowledge of the Structural Activity Relationship (SAR) of different class of drugs and the chemical synthesis of some drugs, the classification of chiral drugs, asymmetric drug synthesis and the importance of asymmetric synthesis.	Remember
14	Have understanding on the fundamentals of biological energy production that is how cells harvest chemical energy by oxidizing glucose to pyruvate and how the products of photosynthesis	Understand

function as the inputs of cell respiration.	

Course: Inorganic Chemistry

SL No.	Course Outcome	Bloom's level
1	To understand free ion terms and their splitting, Orgel diagram, selection rule, vibronic coupling and colour of complexes.	Understand Apply
2	To understand the electronic spectra of metal complexions.	Understand Apply
3	To understand the thermodynamics and kinetic aspects of metal complexes, formation constants, kinetic lability and inertness, Chelate effect	Understand
4	To explain the terms stepwise stability constant and overall constants.	Understand
5	To give appropriate definitions of the terms inert and labile and state which d- electron configurations are associated with inertness.	Understand
6	To know mechanism of ligand displacement reactions.	Understand
7	To determine of composition of ionic compounds by conductometry. Theory of redox and complexometric titrations. Students are able to describe role of different metal ions in biological system.	Understand Apply
8	Toxicity of metal ions, effect of gases and polluted environments	Remember
9	. Importance of metal salts in diet, diagnosis, chemotherapy and as medicines.	Remember
10	To identify and define various types of nuclear transmutation including fission, fusion reactions.	Remember
11	To understand about radioactivity radioactive emissions and decay reactions.	Understand
12	Use of proper isotopic notation to write down and balance a nuclear reaction.	Understand
13	State and compare the differences and similarities between a nuclear change and chemical change.	Remember
14	To calculate each for a given nucleus.	Apply
15	To define binding energy and mass defect and be able to calculate each for a given nucleus.	Understand
16	To understand the concept of rate of change and half-life in the context of nuclear decay.	Remember
17	To understand the basics of nuclear chemistry applications: nuclear power, medical treatment, isotopic labelling and carbon dating. Lanthanoids, Actinoids–separation, color, spectra and magnetic behavior.	Remember
18	Use of lanthanoids/actinoid compounds.	Remember
19	Understanding the separation of lanthanoids and actinoids, its	Remember

color, spectra and magnetic behavior.	Understand

Course: Practical

Course Code: PAPER M 605

SL No.	Course Outcome	Bloom's level
1	In this course, students will have hands on experience on various	Apply
	physical chemistry experiments viz., determination of coefficient	Analyse
	of viscosity, surface tension, mutual solubility of two liquids,	
	molecular mass of volatile liquid, specific rotation of an optically	
	active substance, specific rotation rate, kinetic of a reaction,	
	distribution coefficient and test of validity of Beer-Lambert's	
	law. They will also learn to carry out conductometric titration	
	and potentiometric titration.	

Course: Project Work

Course Code: PAPER M 606

SL No.	Course Outcome	Bloom's level
1	Understand the objectives of doing scientific research.	Apply
		Analyse
2	Learn how to identify the area of research to be conducted, how	Apply
	to proceed for literature survey using a variety of sources and	Analyse
	how to write research project with well laid hypothesis and	
	objectives.	
3	Learn the skills of research design, nature of sample size as well	Apply
	as collection and analysis of data.	Analyse
4	Also know the skills of writing research report and making oral	Apply
	presentations.	Analyse

B.Sc. 6th Semester (General Chemistry)

SL No.	Course Outcome	Bloom's level
1	Have in depth knowledge of basic and applied area of Industrial Chemistry. Students will learn what is polymer, their classification, mechanism of polymerisation, manufacture of certain polymers and also learn their structure, properties and applications.	Understand
2	Have in depth knowledge of basic and applied area of Industrial Chemistry. Students will learn what is polymer, their classification, mechanism of polymerisation, manufacture of certain polymers and also learn their structure, properties and applications.	Understand
	Gain knowledge on how to prepared coal by Fisher-Tropsch	Understand

process and isolate various chemicals from coal. They will also	
learn how various hydrocarbons can be obtained industrially from petroleum, industrial reactions involving those	
hydrocarbons, the synthetic process of methanol from natural	
gas, synthesis of petrol, LPG, CNG and biodiesel.	
Learn details of the production of soap and detergents	Remember
industrially from oils and fats, understand the principle of	
cleansing action of soap and detergents, industrial applications of	
enzymes in the production of alcohol by fermentation of sugars.	
Recognize the different types of air and water pollutant, sources	Remember
of the pollutions, the toxic effects the pollutants. Students will	
get aware of the permissible limits of those pollutants in both air	
and water and measures to control the pollutions. Appreciate the	
ethical context of environmental issues and the links between	
human and natural systems.	
Get insight of the structures and purposes of basic components of	Remember
prokaryotic and eukaryotic cells, cell membrane and have good	
knowledge on concentration gradient, ion and molecule transport	
across the cell membrane, the structure and functions of amino	
acids and proteins.	
Have learnt to draw the structure of the carbohydrates, to predict	Remember
the configuration carbohydrate molecules and knowledge on the	
methods of their synthesis.Learn the details of the structure of DNA and RNA, have clear	Remember
understanding on the genetic organization of mammalian genome	Kemember
and functions of DNA in the synthesis of RNAs and proteins.	
Have good knowledge on the catalytic role of enzymes, the	Remember
hypothesis of Lock-key model of enzyme-receptor interaction,	
importance of metalloenzyme, coenzymes and vitamins.	
Students will conceptualize how various biomolecules are	Remember
metabolized inside the body in order to produce energy for	
various functions and how various metabolic pathways regulate	
growth and development of living beings. Students will know	
about role of high energy compounds, how carbohydrates serve	
as energy source to power various functions.	
Have good knowledge on the extraction, separation, isolation and	Remember
structure elucidation of the natural products terpenes and	
alkaloids. Students must also have understanding on the	
physiological action of alkaloids.	
Learn details about the structure of hormone, their functions in	Remember
biological system and the role of neurotransmitter in their action.	
Have good understanding of the chemistry of drugs with respect	Remember
to their pharmacological activity, learn the structure of various	
antibiotic, antimalarial, anticancerdrugs, their uses and metabolic	
pathways.	

Course: Practical

Course Code: PAPER E 602

SL No.	Course Outcome	Bloom's level
1	In this course students will able to determine the hardness of	Apply
	water by complexometric titration, equivalent mass by	Analyse
	titrimetrically, study the kinetics of a reaction, carry acid-base	
	conductometric titration. In the inorganic part, they will learn to	
	prepare double salt and complex salt.	

Signature of HoD