GOALPARA COLLEGE

DEPARTMENT OF BOTANY

PROGRAMME OUTCOMES

Link to the Syllabus:

- 1. Botany Honours course (CBCS): https://goalparacollege.ac.in/upload/dept_syllabus/1645081218.pdf
- 2. Botany Regular course (CBCS): https://goalparacollege.ac.in/upload/dept_syllabus/1645081264.pdf
- 3. Botany Major (Non-CBCS): https://goalparacollege.ac.in/upload/dept_syllabus/1646802757.pdf
- 4. Botany General (Non-CBCS): https://goalparacollege.ac.in/upload/dept_syllabus/1646802757.pdf

PROGRAMME: B.SC. BOTANY PROGRAMME SPECIFIC OUTCOME

1. Knowledge and Understanding:

- a. Diversity of plants and microbes in terms of structure, function, reproduction and ecological roles.
- b. Evaluation and assessment of plant diversity.
- c. Plant systematics and classification.
- d. Value of biodiversity in terms of ecological balance and sustainable development.
- e. Application of Statistics in biological data analysis.
- f. Application of *in-silico* techniques in biological science.
- g. Basics of biotechnology, biochemistry, genetics and modern biological tools and techniques.

2. Intellectual Skills:

- a. Logical interpretation of problems related to biological science.
- b. Searching various burning issues related to biology, environment and sustainable development though internet.
- c. Capacity building for individual survey works related to nature and environment.

3. Practical Skills:

- a. Study of plant and microbial diversity.
- b. Plant classification and identification, anatomy, morphology, plant physiology, plant biochemistry, genetics, plant breeding etc.
- c. Ecological study of the local area.

- d. *In-silco* techniques in biological science.
- e. Preliminary skills on biotechnology, horticulture, biofertilizers, nursery techniques etc.

4. Transferable Skills:

- a. Use of information technology for accumulation and sharing of data.
- b. Dissemination of scientific ideas in writing and orally.
- c. Creation of team spirit.
- d. Access of E- library resources.
- e. Regularity, punctuality, devotion and career planning.

5. Scientific Knowledge and problem analysis:

Application of principles of basic science in studying and analysing problems and phenomena related to biological science.

6. Usage of Modern tools:

a. Practical application of modern techniques/ instruments in Biochemical and molecular analysis, Biotechnology, *in vitro* culture, microbiology etc.

7. Ethics:

- a. Application of moral and ethical principles to mitigate environmental issues andbiodiversity conservation.
- b. Basic knowledge on environment and sustainable development will createresponsible citizens.

Dr. Someswar Rao Head Department of Botany

Goalpara College

Department of Botany BSc Botany (Hons) CBCS COURSE OUTCOME 2023-2024

SEMESTER-I

(Hons)

Paper Name: Phycology and Microbiology Paper Code: BOT-HC-1016

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
• Students will learn about the algal diversity.	Unit 1: Introduction to microbial world Scope of microbes in industry and environment; Microbial nutrition, growth and metabolism. Unit 2: Viruses	RememberUnderstandRemember
 Students will gain knowledge about the systematics, morphology and structure of Algae. Students will 	Discovery, physiochemical and biological characteristics; classification (Baltimore), general structure with special reference to viroids and prions; replication (general account), DNA virus (T-phage), lytic and lysogenic cycle; RNA virus (TMV). Economic importance of viruses with reference to vaccine production, role in research, medicine and diagnostics, as causal organisms of plant diseases.	 Inderstand Apply
understand the life cyclepattern of Algae.	Unit 3: Bacteria Discovery, general characteristics; Types- archaebacteria, eubacteria, actinomycetes, mycoplasma,	 Remember Understand
• Students will understand the useful and harmful activities of Algae.	rickettsia, chlamydiae and sphaeroplasts); Cell structure; Nutritional types; Reproduction-vegetative, asexual and recombination (conjugation, transformation and transduction). Economic importance of bacteria with reference to their role in agriculture and industry (Alcohol and Antibiotic production).	 Apply Evaluate
• Students will understand the Microbialworld and their diversity.	Unit 4: Algae General characteristics; Ecology and distribution; range of thallus organization; Cell structure and components; cell wall, pigment system, reserve food (of only groups	 Remember Understand Apply Evaluate
 Students will gain the knowledge of the Economic Importance of Microbes. Students will know the 	represented in the syllabus), flagella; methods of reproduction; Classification; Evolutionary significance of <i>Prochloron</i> ; criteria, system of Fritsch, and evolutionary classification of Lee (only upto groups); Role of algae in the environment, agriculture, biotechnology and industry, Economic importance of Diatoms.	- Livalance
harmful effects of microbes.	Unit 5: <i>Cyanophyta and Xanthophyta</i> Ecology and occurrence; Range of thallus organization; Cell structure; Reproduction, Morphology and life-cycle of <i>Nostoc</i> and <i>Vaucheria</i> .	RememberUnderstandApply

• Students will understand the role of microbes in Research activities.	Unit 6: Chlorophyta, Charophyta and Bacillariophyta General characteristics; Occurrence; Range of thallus organization; Cell structure; Reproduction. Morphology and life-cycles of Volvox, Oedogonium, Coleochaete, Chara. General Account of Bacillariophyta.	RememberUnderstandApply
	Unit 7: <i>Phaeophyta and Rhodophyta</i> Characteristics; Occurrence; Range of thallus organization; Cell structure; Reproduction; Morphology and life-cycles of <i>Ectocarpus</i> , <i>Fucus</i> and <i>Polysiphonia</i>	RememberUnderstandApply

Paper Name: Biomolecules and Cell Biology Paper Code: BOT-HC-1026

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
• Students will learn about the chemical nature of biomolecules.	Unit 1: Biomolecules Types and significance of chemical bonds; Structure and properties of water; pH and buffers.	RememberUnderstand
• Students will understand the different types of interaction in Biomolecules.	Carbohydrates: Nomenclature and classification; Monosaccharides; Disaccharides; Oligosaccharides and polysaccharides. Lipids: Definition and major classes of storage and structural lipids; Fatty acids structure and functions; Essential fatty acids; Triacyl glycerols structure, functions and properties; Phosphoglycerides. Proteins: Structure of amino acids; Levels of protein structure-primary, secondary, tertiary and quarternary;	
• Students will gain knowledge about the structure and general features of enzymes.	Protein denaturation and biological roles of proteins. Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleotides; Types of nucleic acids; Structure of A, B, C, D, Z types of DNA; Types of RNA. Unit 2: Bioenergetics	Remember
• Students will attain the concept of enzyme	Laws of thermodynamics, concept of free energy, endergonic and exergonic reactions, coupled reactions, redox reactions. ATP: structure, its role as a energy currency molecule.	• Understand
 activity and enzyme inhibition. Students will understand the Biochemical nature of acll and acll. 	Unit 3: Enzyme Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; Classification of enzymes; Features of active site, substrate specificity, mechanism of action (activation energy, lock and key hypothesis, induced - fit theroy), Michaelis – Menten equation, enzyme inhibition and factors affecting enzyme activity.	RememberUnderstandEvaluate
cell and cell organelles.Students will gain	Unit 4: The Cell Cell as a unit of structure and function; Characteristics of prokaryotic and eukaryotic cells; Origin of eukaryotic cell (Endosymbiotic theory).	RememberUnderstandApply
knowledge about the cell divisions: mitosis & meiosis.Students will attain	Unit 5: Cell wall and plasma membrane Chemistry, structure and function of Plant cell wall. Overview of membrane function; fluid mosaic model; Chemical composition of membranes; Membrane transport – Passive, active and facilitated transport, endocytosis and exocytosis.	RememberUnderstand
knowledge about the endomembrane system and protein transport.	Unit 6: Cell organelles Nucleus: Structure-nuclear envelope, nuclear pore complex, nuclear lamina, molecular organization of chromatin; nucleolus. Cytoskeleton: Role and structure of microtubules, microfilaments and intermediary filament.	RememberUnderstand

Chloroplast, mitochondria and peroxisomes: Structural organization; Function; Semiautonomous nature of mitochondria and chloroplast. Endomembrane system: Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER, protein folding, processing; Smooth ER and lipid synthesis, export of proteins and lipids; Golgi Apparatus – organization, protein glycosylation, protein sorting and export from Golgi Apparatus; Lysosomes	
Unit 7: Cell division Phases of eukaryotic cell cycle, mitosis and meiosis; Regulation of cell cycle-checkpoints, role of protein kinases.	RememberUnderstandEvaluate

SEMESTER-II (Hons)

Paper Name: Mycology and Phytopathology Paper Code: BOT-HC-2016

r

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
 Students will understand the Biodiversity of Fungi and understand the life cycle pattern of Fungi. Students will gain knowledge about the Economic Importance of Fungi. Students will attain knowledge about the 	Unit 1: Introduction to Fungi General characteristics; Status of Fungi in living system; Thallus organization, modification of hyphae; Cell and Cell wall composition; Nutrition, flagella, septum, homothallism and heterothallism, cell division. History of Classification (Hidetta <i>et al.</i> 2007); Classification of Fungi (Ainsworth, 1973, Webster 1977) up to sub-division with diagnostic characters and examples. General characteristics of Myxomycota, Oomycota, Zygomycota, Ascomycota, Basidiomycota and Deuteromycota.	RememberUnderstandApply
 Students will Understand 	Unit 2: Mastigomycotina (Chytridiomycetes and Oomycetes) Characteristic features; Reproduction; Life cycle with reference to <i>Synchytrium, Phytophthora</i> and <i>Albugo</i> .	RememberUnderstandApply
the scope and importance of PlantPathology.	Unit 3: Zygomycotina Characteristic features; Reproduction; Life cycle with reference to Rhizophus.	RememberUnderstand,Apply
• Students will gain knowledge about the prevention and control measures of plant diseases and its effect on economy of crops.	Unit 4: Ascomycotina General characteristics (asexual and sexual fruiting bodies); Life cycle, Heterokaryosis and parasexuality; Life cycle and classification with reference to <i>Saccharomyces, Aspergillus</i> , <i>Penicillium, Neurospora</i> and <i>Peziza</i> .	RememberUnderstandApply
	Unit 5: Basidiomycotina General characteristics; Life cycle and Classification with reference to black stem rust on wheat <i>Puccinia</i> (Physiological Specialization), loose and covered smut (symptoms only), <i>Agaricus</i> ; Bioluminescence, Fairy Rings and Mushroom Cultivation.	RememberUnderstandApply

 Unit 6: Deuteromycotina (Fungi Imperfecti) General characteristics; Thallus organization; reproduction; classification with special reference to <i>Alternaria</i> and <i>Colletotrichum</i>. Unit 7: Allied Fungi- Myxomycota General characteristics; Status of Slime molds, Classification; Occurrence; Types of plasmodia; Types of fruiting bodies. Unit 8: Symbiotic associations Lichen – Occurrence; General characteristics; Range of thallus organization; Internal structure and nature of associations of algal and fungal partners; Reproduction. Mycorrhiza- Ectomycorrhiza, Endomycorrhiza and thair significance 	 Remember Understand Apply Remember Understand Apply Remember Understand Apply Remember Understand Apply
their significance. Unit 9: Applied Mycology Role of fungi in biotechnology; food industry (Flavour & texture, Fermentation, Baking, Organic acids, Enzymes, Mycoproteins); Pharmaceutical (Secondary metabolites); Agriculture (Biofertilizers); Mycotoxins; Biological control (Mycofungicides, Mycoherbicides, Mycoinsecticides, Myconematicides); Medical mycology.	RememberUnderstandApply
Unit 10: Phytopathology Terms and concepts; General symptoms; Geographical distribution of diseases; Etiology; Symptomology; Host-Pathogen relationships; Disease cycle and environmental relation; prevention and control of plant diseases, and role of quarantine. Bacterial diseases – Citrus canker and angular leaf spot of cotton. Viral diseases – Tobacco Mosaic viruses, vein clearing. Fungal diseases – Early blight of potato, Black stem rust of wheat, White rust of crucifers.	RememberUnderstand

Paper Name: Archegoniate Paper Code: BOT-HC-2026

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
 Students will Understand the morphological diversity of Bryophytes. Students will understand the economical and ecological importance of the Bryophytes. Students will gain knowledge about the taxonomic position, occurrence, thallus structure, reproduction of Bryophytes. 	 Unit 1: Introduction Unit jying features of archegoniates; Transition to land habit; Alternation of generations. Unit 2: Bryophytes General characteristics; Adaptations to land habit; Classification; Range of thallus organization. Unit 3: Type Studies- Bryophytes Classification, morphology, anatomy and reproduction of <i>Riccia, Marchantia, Anthoceros, Sphagnum</i> and <i>Polytrichum</i>; Reproduction and evolutionary trends in <i>Riccia, Marchantia, Anthoceros, Sphagnum</i> and <i>Polytrichum</i>. Ecological and economic importance of bryophytes. 	 Remember Understand Remember Understand, Apply Remember Understand Apply
 Students will understand the morphological diversity of Pteridophytes. Students will understand the economic 	Unit 4: Pteridophytes General characteristics; Classification; Early landplants (<i>Cooksonia</i> and <i>Rhynia</i>).	RememberUnderstandApply
 Pteridophytes. Students will attain knowledge about the taxonomic position, occurrence, thallus structure, reproduction of 	Unit 5: Type Studies- Pteridophytes Classification, of <i>Psilotum</i> , <i>Lycopodium,Selaginella, Equisetum, Pteris</i> and <i>Marsilea</i> .Apogamy and apospory, heterospory and seedhabit, telome theory, stelar evolution; Ecological and economic importance.	RememberUnderstandApply
 Pteridophytes. Students will gain knowledge about the evolution of Bryophytes and Pteridophytes. 	Unit 6: Gymnosperms General characteristics, classification (up to family), morphology, anatomy and reproduction of <i>Cycas</i> , <i>Pinus, Ginkgo</i> and <i>Gnetum</i> ; Ecological and economic importance.	RememberUnderstandApply

SEMESTER-III (HONS)

Paper Name: Morphology and Anatomy of Angiosperms Paper Code: BOT-HC-3016

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
• Students will understand about the plant communities and ecological adaptations in	Unit 1: Morphology Morphology of inflorescence, stamens and carpel, fruit; Telome theory, phyllode theory; Role of morphology in plant classification.	RememberUnderstand
plants.Students will gain	Unit 2: Introduction and scope of plant Anatomy Application in systematics, forensics and pharmacognosy.	RememberUnderstandApply
knowledge about the tissues and tissue systems of Plants.Students will learn about the wood anatomy.	Unit 3: Structure and Development of Plant Body Internal organization of plant body: The three tissue systems, types of cells and tissues. Development of plant body: Polarity, Cytodifferentiation and organogenesis during embryogenic development.	RememberUnderstandApply
• Students will attain knowledge about the anatomical difference of dicot and monocot.	Unit 4: Tissues Classification of tissues; Simple and complex tissues (no phylogeny); cytodifferentiation of tracheary elements and sieve elements; Pits and plasmodesmata; Wall ingrowths and transfer cells, adcrustation and incrustation, Ergastic substances. Hydathodes, cavities, lithocysts and laticifers.	RememberUnderstandApply
• Students will gain knowledge about the origin, development, arrangement and diversity in size and shape of leaves.	Unit 5: Apical meristems Evolution of concept of organization of shoot apex (Apical cell theory, Histogen theory, Tunica Corpus theory, continuing meristematic residue, cytohistological zonation); Types of vascular bundles; Structure of dicot and monocot stem. Origin, development, arrangement and diversity in size and shape of leaves; Structure of dicot and monocot leaf, Kranz anatomy. Organization of root apex (Apical cell theory, Histogen theory, Korper-Kappe theory); Quiescent centre; Root cap; Structure of dicot and monocot root; Endodermis, exodermis and origin of lateral root.	RememberUnderstandApply

Unit 6: Vascular Cambium and Wood Structure, function and seasonal activity of cambium; Secondary growth in root and stem. Axially and radially oriented elements; Types of rays and axial parenchyma; Cyclic aspects and reaction wood; Sapwood and heartwood; Ring and diffuse porous wood; Early and late wood, tyloses; Dendrochronology. Development and composition of periderm, rhytidome and lenticels.		Remember Understand Apply
Unit 7: Adaptive and Protective Systems Epidermal tissue system, cuticle, epicuticular waxes, trichomes (uni-and multicellular, glandular and nonglandular, two examples of each), stomata (classification); Adcrustation and incrustation; Anatomical adaptations of xerophytes and hydrophytes.	•	

Paper Name: Economic Botany Paper Code: BOT-HC-3026

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
• Students will gain knowledge about the major introduced plant species, concept of centre of origin and	Unit 1: Origin of Cultivated Plants Centres of Origin, their importance with reference to Vavilov's work. Introductions, domestication and loss of crop genetic diversity; evolution of new crops/varieties, importance of germplasm diversity.	RememberUnderstand
 their importance. Students will attain 	Unit 2: Cereals Wheat and Rice (origin, morphology, processing & uses); Brief account of millets.	RememberUnderstandApply
knowledge about crop domestication and loss of genetic diversity.	Unit 3: Legumes Origin, morphology and uses of Chick pea, Pigeon pea and fodder legumes. Importance to man and ecosystem.	RememberUnderstandApply
• Students will understand the evolution of new crops /varieties.	Unit 4: Sources of sugars and starches Morphology and processing of sugarcane, products and by- products of sugarcane industry. Potato – morphology, propagation & uses.	RememberUnderstand
 Students will know about the germplasm diversity. 	Unit 5: Spices Listing of important spices, their family and part used. Economic importance with special reference to fennel, saffron, clove and black pepper.	RememberUnderstandApply
• Students will understand the economic importance of	Unit 6: Beverages Tea, Coffee (morphology, processing & uses).	RememberUnderstandApply
various plant species.	Unit 7: Sources of oils and fats General description, classification, extraction, their uses and health implications groundnut, coconut, linseed, soybean, mustard and coconut (Botanical name, family & uses). Essential Oils: General account, extraction methods, comparison with fatty oils & their uses.	RememberUnderstandApply
	Unit 8: Natural Rubber Para-rubber: tapping, processing and uses.	RememberUnderstandApply

Unit 9: Drug-yielding plants Therapeutic and habit-forming drugs with special reference to Cinchona, Digitalis, Papaver and Cannabis; Tobacco (Morphology, processing, uses and health hazards).	•	Remember Understand Apply
Unit 10: Timber plants General account with special reference to teak and pine.	•	Remember Understand Apply
Unit 11: Fibers Classification based on the origin of fibers; Cotton, Coir and Jute (morphology, extraction and uses).	•	Remember Understand Apply

Paper Name: Genetics Paper Code: BOT-HC-3036

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
 Know about the genomic organization or living organisms, study of genes genome, chromosome etc. Gain knowledge on 	Unit 1: Mendelian genetics and its extension Mendelism: History; Principles of inheritance; Chromosome theory of inheritance; Autosomes and sex chromosomes; Probability and pedigreeanalysis; Incomplete dominance and codominance; Multiple alleles, Lethal alleles, Epistasis, Pleiotropy, Recessive and Dominant traits, Penetrance and Expressivity, Numericals; Polygenic inheritance.	RememberUnderstandEvaluate
Mendel's genetics and its extensions.Know about variation in	Unit 2: Extrachromosomal Inheritance Chloroplast inheritance: Variegation in Four o'clock plant; Mitochondrial in yeast; Maternal effects-shell coiling in snail; Kappa particles in Paramecium.	RememberUnderstand
 Chromosome number and structure. Understand about population and 	Unit 3: Linkage, crossing over and chromosome mapping Linkage and crossing over-Cytological basis of crossing over; Recombination frequency, two factor and three factor crosses; Interference and coincidence; Numericals based on gene mapping; Sex Linkage.	Remember,Understand
evolutionary genetics.	Unit 4: Variation in chromosome number and structure Deletion, Duplication, Inversion, Translocation, Position effect, Euploidy and Aneuploidy.	RememberUnderstand
	Unit 5: Gene mutations Types of mutations; Molecular basis of Mutations; Mutagens – physical and chemical (Base analogs, deaminating, alkylating and intercalating agents); Detection of mutations: CIB method. Role of Transposons in mutation. DNA repair mechanisms.	RememberUnderstand
	Unit 6: Fine structure of gene Classical vs molecular concepts of gene; Ciston, Racon, Muton, rII locus	RememberUnderstandApply
	Unit 7: Population and Evolutionary Genetics Allele frequencies, Genotype frequencies, Hardy-Weinberg Law, role of natural selection, mutation, genetic drift. Genetic variation and Speciation.	RememberUnderstandApply

SEMESTER-IV (HONS)

Paper Name: Molecular Biology Paper Code: BOT-HC-4016

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
• Students will gain knowledge about the genomic organization or living organisms, study of genes	Unit 1: Nucleic acids: Carriers of genetic information Historical perspective; DNA as the carrier of genetic information (Griffith's, Hershey & Chase, Avery, McLeod & McCarty, Fraenkel-Conrat's experiment.	RememberUnderstand
genome, chromosome etc.	Unit 2: The Structures of DNA and RNA / Genetic Material DNA Structure: Miescher to Watson and Crick- historic	RememberUnderstand
• Students will gain knowledge on Mendel's genetics and its extensions.	perspective, DNA structure, Salient features of double helix, denaturation and renaturation, cot curves; Organization of DNA-Prokaryotes, Viruses, Eukaryotes. Organelle DNA mitochondria and chloroplast DNA. The	• Apply
• Students will understand about variation in chromosome numberand structure.	Nucleosome Chromatin structure- Euchromatin, Heterochromatin- Constitutive and Facultative heterochromatin.	
 Students will learn about population and evolutionary genetics. 	Unit 3: The replication of DNA Chemistry of DNA synthesis (Kornberg's discovery); General principles – bidirectional, semi-conservative and semi discontinuous replication, RNA priming; Various models of DNA replication, including rolling circle, θ (theta) mode of replication, replication of linear ds-DNA; Enzymes involved in DNA replication.	RememberUnderstand
	Unit 4: Central dogma and genetic code Key experiments establishing-The Central Dogma (Adaptor hypothesis and discovery of mRNA template), Genetic code (deciphering & salient features).	RememberUnderstand
	Unit 5: Transcription Transcription in prokaryotes and eukaryotes. Principles of transcriptional regulation; Prokaryotes: Regulation of lactose metabolism and tryptophan synthesis in <i>E. coli</i> . Eukaryotes: transcription factors, heat shock proteins, steroids and peptide hormones; Gene silencing.	RememberUnderstand
	Unit 6: Processing and modification of RNA Split genes-concept of introns and exons, removal of introns, spliceosome machinery, splicing pathways, group I and group II intron splicing, alternative splicing eukaryotic mRNA processing (5' cap, 3' poly A tail); Ribozymes; RNA editing and mRNA transport.	RememberUnderstand
	Unit 7: Translation Ribosome structure and assembly, mRNA; Charging of tRNA, aminoacyl tRNA synthetases; Various steps in protein synthesis, proteins involved in initiation, elongation and termination of polypeptides; Fidelity of translation; Inhibitors of protein synthesis; Post-translational modifications of proteins.	RememberUnderstand

Paper Name: Plant Ecology and Phytogeography Paper Code: BOT-HC-4026

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
• Students will understand the inter- relationship between the living world and environment.	Unit 1: Introduction Basic concepts; Levels of organization. Inter-relationships between the living world and the environment, the components and dynamism, homeostasis.	Remember,UnderstandEvaluate
• Students will gain knowledge about the soil profile and role of climate in soil development.	Unit 2: Soil Importance; Origin; Formation; Composition; Physical; Chemical and Biological components; Soil profile; Role of climate in soil development.	RememberUnderstandApply
• Students will understand the concept of ecology and its specification.	Unit 3: Water Importance: States of water in the environment; Atmospheric moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological Cycle; Water in soil; Water table.	RememberUnderstandApply
• Students will learn about ecosystem and its components.	Unit 4: Adoptation of plants to various environmental factors Light, temperature, wind and fire	RememberUnderstandEvaluate
• Students will understand the principles, endemism, biomes and	Unit 5: Biotic interaction Trophic organization, basic source of energy, autotrophy, heterotrophy; symbiosis, commensalism, parasitism; food chains and webs; ecological pyramids; biomass, standing crop.	RememberUnderstandEvaluate
phytogeographical divisions of India.	Unit 6: Population ecology Population characteristics, Growth curve, population regulation, r and k selection. Ecological speciation: Allopatric/ Sympatric and Parapatric speciation.	RememberUnderstandApply
	Unit 7: Plant communities Concept of ecological amplitude; Habitat and niche; Characters: analytical and synthetic; Ecotone and edge effect; Dynamics: succession – processes, types; climax concepts.	RememberUnderstandEvaluate
	Unit 8: Ecosystem Structure; Processes; Trophic organisation; Food chains and Food webs; Ecological pyramids.	RememberUnderstandEvaluate
	Unit 9: Functional aspects of ecosystem Principles and models of energy flow; Production and productivity; Ecological efficiencies; Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus.	Remember,UnderstandEvaluate
	Unit 10: Phytogeography Principles; Continental drift; Theory of tolerance; Endemism; Brief description of major terrestrial biomes (one each from tropical, temperate & tundra); Phytogeographical division of India; Vegetation types of NE India with special reference to Assam.	RememberUnderstandApply

Paper Name: Plant Systematics Paper Code: BOT-HC-4036

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
 Students will gain knowledge of plant identification, concept of classify- cation, principle andrules of nomenclature. Students will gain knowledge about origin and 	Unit 1: Significance of Plant Systematics Introduction to systematics; Plant identification, Classification, Nomenclature. Evidences from palynology, cytology, phytochemistry and molecular data. Functions and importance of Herbarium; Important herbaria and botanical gardens of the world and India; Virtual herbarium; E-flora; Concept of taxa (family, genus, species); Categories and taxonomic hierarchy.	 Remember Understand Evaluate Apply
evolution of angiosperm and their evolutionary relationship.Students will learn about	Unit 2: Botanical Nomenclature Principles and rules (ICN); Ranks and names; Typification, author citation, Effective and valid publication, rejection of names, principle of priority and its limitations; Names of hybrids.	RememberUnderstandApply
 Students will learn about biometrics, numerical taxonomyand cladistics. Students will know the history of plant classification. 	Unit 3: Systems of Classification Major contributions of Theophrastus, Bauhin, Tournefort, Linnaeus, Adanson, de Candolle, Bessey, Hutchinson, Takhtajan and Cronquist; Classification systems of Bentham and Hooker (upto series) and Engler and Prantl (upto series); Brief reference of Angiosperm Phylogeny Group (APG) classification.	RememberUnderstand,Apply
	Unit 4: Numerical taxonomy and cladistics Characters; Variations; OTUs, character weighting and coding; Cluster analysis; Phenograms, cladograms (definitions and differences).	RememberUnderstandApply
	Unit 5: Phylogeny of Angiosperms Terms and concepts (primitive and advanced, homology and analogy, parallelism and convergence, monophyly, Paraphyly, polyphyly and clades). Origin and evolution of angiosperms; Co-evolution of angiosperms and animals; Methods of illustrating evolutionary relationship (phylogenetic tree, cladogram).	RememberUnderstand
	Unit 6: Angiospermic Families Detail study of the following families: Magnoliaceae, Fabaceae, Asteraceae, Solanaceae, Acanthaceae, Lamiaceae, Euphorbiaceae, Orchidaceae, Musaceae, Zingiberaceae, Poaceae.	RememberUnderstand

SEMESTER-V (HONS)

Paper Name: Reproductive Biology of Angiosperms Paper Code: BOT-HC-5016

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
• Students will gain knowledge of reproductive development of Angiospermic plant.	Unit 1: Introduction History (contributions of G.B. Amici, W. Hofmeister, E. Strasburger, S.G. Nawaschin, P. Maheshwari, B.M. Johri, W.A. Jensen, J. Heslop-Harrison) and scope.	RememberUnderstand
• Students will Understand about the pollination and fertilization mechanism.	Unit 2: Reproductive development Induction of flowering; flower as a modified determinate shoot. Flower development: genetic and molecular aspects.	Remember,Understand
• Students will gain knowledge about the embryo, endosperm, seed, structure and their	Unit 3: Anther and pollen biology Anther wall: Structure and functions, microsporogenesis, callose deposition and its significance. Microgametogenesis; Pollen wall structure, MGU (male germ unit) structure, NPC system; Palynology and scope (a brief account); Pollen wall proteins; Pollen viability, storage and germination; Abnormal features: Pseudomonads, polyads, massulae, pollinia.	Remember,UnderstandApply
 development. Students will attain knowledge about apomixes and polyembryony. 	Unit 4: Ovule Structure; Types; Special structures–endothelium, obturator, aril, caruncle and hypostase; Female gametophyte– megasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesis (details of <i>Polygonum</i> type); Organization and ultrastructure of mature embryo sac.	RememberUnderstandApply
	Unit 5: Pollination and fertilization Pollination types and significance; adaptations; structure of stigma and style; path of pollen tube in pistil; double fertilization.	RememberUnderstand
	Unit 6: Self incompatibility Basic concepts (interspecific, intraspecific, homomorphic, heteromorphic, GSI and SSI); Methods to overcome self-incompatibility: mixed pollination, bud pollination, stub pollination; Intra-ovarian and <i>in vitro</i> pollination; Modification of stigma surface, parasexual hybridization; Cybrids, <i>in vitro</i> fertilization.	RememberUnderstandEvaluate
	Unit 7: Embryo, Endosperm and Seed Structure and types; General pattern of development of dicot and monocot embryo and endosperm; Suspensor: structure and functions; Embryo-endosperm relationship; Nutrition of embryo; Unusual features; Embryo development in <i>Paeonia</i> . Seed structure, importance and dispersal mechanisms.	RememberUnderstand
	Unit 8: Polyembryony and Apomixis Introduction; Classification; Causes and applications	RememberUnderstand

Paper Name: Plant Physiology Paper Code: BOT-HC-5026

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
 Gain knowledge of Plant water relation-ship. Gain knowledge of mineral & nutrition, nutrient uptake and translocation. Gain knowledge of plant 	Unit 1: Plant-water relation Water Potential and its components, water absorption by roots, aquaporins, pathway of water movement, symplast, apoplast, transmembrane pathways, root pressure, guttation. Ascent of sap– cohesion-tension theory. Transpiration and factors affecting transpiration, antitranspirants, mechanism of stomatal movement. Plant response to water stress.	Remember,Understand
 Gain knowledge of phate growth regulators, Physiology of flowering. Gain knowledge of phytochromes and phototropins. 	Unit 2: Mineral nutrition Essential and beneficial elements, macro and micronutrients, methods of study and use of nutrient solutions, criteria for essentiality, mineral deficiency symptoms, roles of essential elements, chelating agents, Ion antagonism and toxicity.	RememberUnderstandEvaluate
	Unit 3: Nutrient Uptake Soil as a nutrient reservoir, transport of ions across cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems, proton ATPase pump and ion flux, uniport, co-transport, symport, antiport.	RememberUnderstand
	Unit 4: Translocation in the phloem Experimental evidence in support of phloem as the site of sugar translocation. Pressure–Flow Model; Phloem loading and unloading; Source–sink relationship.	RememberUnderstand
	Unit 5: Plant growth regulators Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin, Abscisic acid, Ethylene, Brassinosteroids and Jasmonic acid.	RememberUnderstand
	Unit 6: Physiology of flowering Photoperiodism, flowering stimulus, florigen concept, vernalization, seed dormancy.	RememberUnderstandAnalyze
	Unit 7: Phytochrome, crytochromes and phototropins Discovery, chemical nature, role in photomorphogenesis, low energy responses (LER) and high irradiance responses (HIR), mode of action.	RememberUnderstand

Paper Name: Natural Resource management Paper Code: BOT-HE-5016

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
• Students will gain a comprehensive knowledge on	Unit 1: Natural resources Definition and types	RememberUnderstand
different types of natural resources and their ecological,	Unit 2: Sustainable utilization Concept, approaches (economic, ecological and socio- cultural).	RememberUnderstand
economical and socio-cultural values.	Unit 3: Land Utilization (agricultural, pastoral, horticultural, silvicultural); Soil degradation and management.	RememberUnderstandApply
• Students will achieve basic understandings of land, water and forest resources.	Unit 4: Water Fresh water (rivers, lakes, groundwater, aquifers, watershed); Marine; Estuarine; Wetlands; Threats and management strategies.	RememberUnderstandApply
• Students will attain overall knowledge on resource degradation, their judicious use	Unit 5: Biological Resources Biodiversity-definition and types; Significance; Threats; Management strategies; Bio-prospecting; IPR; CBD; National Biodiversity Action Plan).	RememberUnderstand
and management for sustainability.	Unit 6: Forest Definition, Cover and its significance (with special reference to India); Major and minor forest products; Depletion; Management.	RememberUnderstandEvaluate
• Students will gain knowledge on biodiversity- its importance management and Bioprospecting.	Unit 7: Energy Renewable and non-renewable sources of energy.	RememberUnderstand
• Students will learn about IPR, and global arena on resource management, conservation and	Unit 8: Contemporary practices in resource management EIA, GIS, Participatory Resource Appraisal, Ecological Footprint with emphasis on carbon footprint, Resource Accounting; Waste management.	RememberUnderstand
 benefit sharing. Students will have hands on experience on the domestic solid waste estimation and determining its impact on land degradation. Students will experience a hands on experience on forest study using tools like GPS/GIS, and understanding of ecological importance 	Unit 9: National and international efforts in resource management and conservation	 Remember Understand Apply
of forest resources		

Paper Name: Horticultural Practices and Post-Harvest Technology Paper Code: BOT-HE-5026

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
 Students will gain basic understandings on Horticultural science and its importance in employment genera-tion and socio- 	Unit 1: Introduction Scope and importance, Branches of horticulture; Role in rural economy and employment generation; Importance in food and nutritional security; Urban horticulture and ecotourism.	RememberUnderstand
 genera-tion and socio- economic development. Students will learn about the classification of horticultural crops, identification of potential horticultural crops – their cultivation, production, 	Unit 2: Ornamental plants Types, classification (annuals, perennials, climbers and trees); Identification and salient features of some ornamental plants [rose, marigold, gladiolus, carnations, orchids, poppies, gerberas, tuberose, sages, cacti and succulents (opuntia, agave and spurges)] Ornamental flowering trees (Indian laburnum, gulmohar, Jacaranda, Lagerstroemia, fishtail and areca palms, semul, coraltree).	 Remember Understand, Analyse Apply
 management and commercialization. Students will gain knowledge on horticultural techniques, 	Unit 3: Fruit and vegetable crops Production, origin and distribution; Description of plants and their economic products; Management and marketing of vegetable and fruit crops; Identification of some fruits and vegetable varieties (citrus, banana, mango, chillies and cucurbits).	RememberUnderstandApply
 horticultural techniques, landscaping and gardening. Students will attain an overall knowledge on post- harvest technology, disease management, and germplasm management for horticulture. Students will gain field knowledge of gardening, nurseries, standing crops of horticultural importance 	Unit 4: Horticultural techniques Application of manure, fertilizers, nutrients and PGRs; Weed control; Biofertilizers, biopesticides; Irrigation methods (drip irrigation, surface irrigation, furrow and border irrigation); Hydroponics; Propagation Methods: asexual (grafting, cutting, layering, budding), sexual (seed propagation), Scope and limitations.	RememberUnderstandApply
	Unit 5: Landscaping and garden design	RememberUnderstandAnalyse
	Unit 6: Floriculture Cut flowers, bonsai, commerce (market demand and supply); Importance of flower shows and exhibitions.	RememberUnderstandApply
	Unit 7: Post-harvest technology Importance of post-harvest technology in horticultural crops; Evaluation of quality traits; Harvesting and handling of fruits, vegetables and cut flowers; Principles, methods of preservation and processing; Methods of minimizing loses during storage and transportation; Food irradiation - advantages and disadvantages; food safety.	RememberUnderstandApply
	Unit 8: Disease control and management Field and post-harvest diseases; Identification of deficiency symptoms; remedial measures and nutritional management practices; Crop sanitation; IPM strategies (genetic, biological andchemical methods for pest control); Quarantine practices; Identification of common diseases	RememberUnderstandEvaluate

and pests of ornamentals, fruits and vegetable crops. Unit 9: Horticultural crops - conservation and management Documentation and conservation of germplasm; Role of micropropagation and tissue culture techniques; Varieties and cultivars of various horticultural crops; IPR issues; National, international and professional societies and sources of information on horticulture.	 Remember Understand Analyse
Unit 10: Field trip Field visits to gardens, standing crop sites, nurseries, vegetable gardens and horticultural fields at suitable locations.	 Remember Understand Analyse Evaluate Apply

SEMESTER-VI (HONS)

Paper Name: Plant Metabolism Paper Code: BOT-HC-6016

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
 Students will gain detailed knowledge of metabolic events of photosynthesis and nutrient metabolism. Students will gain 	Unit 1: Concept of metabolism Introduction, anabolic and catabolic pathways, regulation of metabolism, role of regulatory enzymes; classification, nomenclature and importance of enzyme; concept of coenzyme, apoenzyme and prosthetic group; enzyme inhibition (allosteric, covalent modulation and Isozymes).	RememberUnderstand
 Students will gain knowledge of signalling molecules and pathways in the plant cell. Students will attain practical knowledge on different types of chromatographic 	Unit 2: Carbon assimilation Historical background, photosynthetic pigments, role of photosynthetic pigments (chlorophylls and accessory pigments), antenna molecules and reaction centres, photochemical reactions, photosynthetic electron transport, PSI, PSII, Q cycle, CO2 reduction, photorespiration, C4-	RememberUnderstand
 techniques. Students will be able to perform estimation of TAN, sugar and protein contents in 	Unit 3: Carbohydrate metabolism Synthesis and catabolism of sucrose and starch.	RememberUnderstand,Apply
plant sample	Unit 4: Carbon Oxidation Glycolysis, fate of pyruvate, regulation of glycolysis, oxidative pentose phosphate pathway, oxidative decarboxylation of pyruvate, regulation of PDH, NADH shuttle; TCA cycle, amphibolic role, anaplerotic reactions, regulation of the cycle, mitochondrial electron transport, oxidative phosphorylation, cyanide-resistant respiration, factors affecting respiration.	RememberUnderstandApply
	Unit 5: ATP synthesis Mechanism of ATP synthesis, substrate level phosphorylation, chemiosmotic mechanism (oxidative and photophosphorylation), ATP synthase, Boyers conformational model, Racker's experiment, Jagendorf's experiment; role of uncouplers.	RememberUnderstand
	Unit 6: Lipid metabolism Synthesis and breakdown of triglycerides, β -oxidation, glyoxylate cycle, gluconeogenesis and its role in mobilisation of lipids during seed germination, α oxidation.	RememberUnderstandEvaluate
	Unit 7: Nitrogen metabolism Nitrate assimilation, biological nitrogen fixation (examples of legumes and non-legumes); Physiology and biochemistry of nitrogen fixation; Ammonia assimilation and transamination.	RememberUnderstand

Unit 8: Mechanisms of signal transduction Receptor-ligand interactions; Second messenger concept, Calcium calmodulin, MAP kinase cascade.	RememberUnderstand
---	---

Paper Name: Plant Biotechnology Paper Code: BOT-HC-6026

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
Students will gain knowledge on applications of tissue culture techniques, construction of recombinant DNA and transformation into hosts, construction of DNA libraries.	Unit 1: Plant Tissue Culture Historical perspective; Composition of media; Nutrient and hormone requirements (role of vitamins and hormones); Totipotency; Organogenesis; Embryogenesis (somatic and zygotic); Protoplast isolation, culture and fusion; Tissue culture applications (micropropagation, androgenesis, virus elimination, secondary metabolite production, haploids, triploids and hybrids; Cryopreservation; Germplasm Conservation).	RememberUnderstandApply
 Students will gain knowledge on development of transgenic plants for agricultural or industrial use. Practical utility on isolation of 	Unit 2: Recombinant DNA Technology Restriction Endonucleases (History, Types I-IV, biological role and application); Restriction Mapping (Linear and Circular); Cloning Vectors: Prokaryotic (pUC 18 and pUC19, pBR322, Ti plasmid, BAC); Lambda phage, M13 phagemid, Cosmid, Shuttle vector; Eukaryotic Vectors (YAC).	RememberUnderstandAnalyze
 plasmid DNA, its digestion and separation of fragments through gel electrophoresis. Preparation of media fortissue culture techniquesand photographic study of plant tissue culture. 	Unit 3: Gene Cloning Recombinant DNA, Bacterial Transformation and selection of recombinant clones, PCR-mediated gene cloning; Gene Construct; construction of genomic and cDNA libraries, screening DNA libraries to obtain gene of interest by genetic selection; complementation, colony hybridization; PCR.	RememberUnderstandAnalyze
 Photographic study of generating transgenicplants for agriculture 	Unit 4: Methods of gene transfer <i>Agrobacterium</i> -mediated, Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment; Selection of transgenics– selectable marker and reporter genes (Luciferase, GUS, GFP).	RememberUnderstandApply
agriculture	Unit 5: Application of Biotechnology Pest resistant (Bt-cotton); herbicide resistant plants (RoundUp Ready soybean); Transgenic crops with improved quality traits (Flavr Savr tomato, Golden rice); Improved horticultural varieties (Moondust carnations); Role of transgenics in bioremediation (Superbug); edible vaccines; Industrial enzymes (Aspergillase, Protease, Lipase); Gentically Engineered Products– Human Growth Hormone; Humulin; Biosafety concerns.	RememberUnderstandApply

Paper Name: Industrial and Environmental Microbiology Paper Code: BOT-HE-6016

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
Understanding the rolesof microbes in	Unit 1: Scope of microbes in industry and environment	Remember
 industries and environment. 	Unit 2: Bioreactors/Fermenters and fermentation processes	UnderstandRememberUnderstand
 Basic knowledge ofdifferent kinds ofbioreactors and fermentation processes. Knowledge on production processes of some microbial products 	Solid-state and liquid-state (stationary and submerged) fermentations; Batch and continuous fermentations. Components of a typical bioreactor, Types of bioreactors- laboratory, pilotscale and production fermenters; Constantly stirred tank fermenter, tower fermenter, fixed bed and fluidized bed bioreactors and air-lift fermenter. A visit to any educational institute/ industry to see an	• Apply
in industriesthrough site visits.	industrial fermenter, and other downstream processing operations.	
 Knowledge on application of enzymes in industries. Diversity and distribution of microbesin air, water and soil. 	Unit 3: Microbial production of industrial products Microorganisms involved, media, fermentation conditions, downstream processing and uses; Filtration, centrifugation, cell disruption, solvent extraction, precipitation and ultrafiltration, lyophilization, spray drying; Hands on microbial fermentations for the production and estimation (qualitative and quantitative) of Enzyme: amylase or lipase activity, Organic acid (citric acid or glutamic acid), alcohol (Ethanol) and antibiotic (Penicillin).	RememberUnderstandApply
 Basic understandings on water microbiology and water analysis methods. Usefulness of microbes in agriculture and bioremediation of contaminated soils. 	Unit 4: Microbial enzymes of industrial interest and enzyme immobilization Microorganisms for industrial applications and hands on screening microorganisms for casein hydrolysis; starch hydrolysis; cellulose hydrolysis. Methods of immobilization, advantages and applications of immobilization, large scale applications of immobilized enzymes (glucose isomerase and penicillin acylase).	RememberUnderstandApply
 Practical experiences on basic microbiological techniques and 	Unit 5: Microbes and quality of environment Distribution of microbes in air; Isolation of microorganisms from soil, air and water.	RememberUnderstandApply
handlings	Unit 6: Microbial flora of water Water pollution, role of microbes in sewage and domestic waste water treatment systems. Determination of BOD, COD, TDS and TOC of water samples; Microorganisms as indicators of water quality, check coliform and fecal coliform in water samples.	RememberUnderstandAnalyze
	Unit 7: Microbes in agriculture and remediation of contaminated soils Biological fixation; Mycorrhizae; Bioremediation of contaminated soils. Isolation of root nodulating bacteria, arbuscular mycorrhizal colonization in plant roots.	RememberUnderstandEvaluate

Paper Name: Analytical Techniques in Plant Sciences Paper Code: BOT-HE-6026

Course Outcome	Unit No. and Topics	Levels of Bloom's Taxonomy will be Achieved
 Knowledge on microscopy and imaging in plant science. Principles and applicationof centrifuge, spectroscopy and chromatography inbiology. Basic knowledge on 	Unit 1: Imaging and related techniques Principles of microscopy; Light microscopy; Fluorescence microscopy; Confocal microscopy; Use of fluorochromes: (a) Flow cytometry (FACS); (b) Applications of fluorescence microscopy: Chromosome banding, FISH, chromosome painting; Transmission and Scanning electron microscopy – sample preparation for electron microscopy, cryofixation, negative staining, shadow casting, freeze fracture, freeze etching.	RememberUnderstandApply
biostatistics including measures of central tendency and dispersions, statistical data analysisand representations.	Unit 2: Cell fractionation Centrifugation: Differential and density gradient centrifugation, sucrose density gradient, CsCl2gradient, analytical centrifugation, ultracentrifugation, marker enzymes.	RememberUnderstandApply
 Practical knowledge on microscopy, chromate- graphy, centrifugationand spectroscopy 	Unit 3: Radioisotopes Use in biological research, auto-radiography, pulse chase experiment.	RememberUnderstandApply
	Unit 4: Spectrophotometry Principle and its application in biological research.	RememberUnderstandApply
	Unit 5: Chromatography Principle; Paper chromatography; Column chromatography, TLC, GLC, HPLC, Ion-exchange chromatography; Molecular sieve chromatography; Affinity chromatography.	RememberUnderstandAnalyzeApply
	Unit 6: Characterization of proteins and nucleic acids Mass spectrometry; X-ray diffraction; X-ray crystallography; Characterization of proteins and nucleic acids; Electrophoresis: AGE, PAGE, SDS-PAGE.	Remember,UnderstandApply
	Unit 7: Biostatistics Statistics, data, population, samples, parameters; Representation of Data: Tabular, Graphical; Measures of central tendency: Arithmetic mean, mode, median; Measures of dispersion: Range, mean deviation, variation, standard deviation; Chi-square test for goodness of fit.	 Remember Understand Evaluate Apply