Total number of printed pages-7

3 (Sem-4/CBCS) STA HC 1

2023 STATISTICS

(Honours Core)

Paper: STA-HC-4016

(Statistical Inference)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: 1×7=7
 - (a) Sample median is ____ estimator for the mean of normal population.

(Fill in the blank)

(b) Unbiased estimators are necessarily consistent.

(State True or False)

Contd.

- c) Area of critical region depends on
- i) number of observations
- (ii) value of the statistic
- (iii) size of type I error
- (iv) size of type II error (Choose the correct option)
- (d) For a certain test if $\alpha = 0.05$, $\beta = 0.10$, then the power of the test is
- (i) 0.95
- (ii) 0.90
- (iii) 0.05 (iv) 0.10

(Choose the correct option)

(e) Sample moments are _____ estimators of the corresponding population moments. (Fill in the blank)

Suppose we put forward an interval which we expect to include the trees parameter value, then the process is called ____ estimation.

(Fill in the blank)

The N-P lemma proceeds the best critical region for testing hypothesis against ____ alternative hypothesis. (Fill in the blanks)

- . Answer the following questions: 2×4=
- (a) If x_1, x_2,x_n is a random sample from a normal population $N(\mu, 1)$, then

show that $T = \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of $\mu^2 + 1$.

Find the maximum likelihood estimator of θ for the following probability distribution: $f(x,\theta) = \theta e^{-\theta x}, x > 0, \theta > 0$

3 (Sem-4/CBCS) STA HC 1/G

3

Contd

- (d) Give example of a maximum likelihood estimator which is not unbiased.
- Answer any three questions from the following: $5\times 3=15$
- (a) Obtain the M.L.E. of α and β for the rectangular distribution

$$f(x:\alpha,\beta) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < p \\ u, & \text{elsewhere} \end{cases}$$

- b) Show that, if a sufficient estimator exists, it is a function of the M.L.E.
- (c) What is meant by statistical hypothesis? Explain the concept of type I and type II error with example. What is the power of a test?

(d) Let X have the p.d.f. of the form

$$f(x,\theta) = \theta x^{\theta-1}, 0 < x < 1$$
$$= 0 , elsewhere$$

Find the most powerful test to test the simple hypothesis

$$H_0: \theta = 1$$

against the alternative hypothesis

$$l_1:\theta=2$$

by means of a single observation X. What would be the size of type I and type II error, if you choose the interval

- $x \ge 0.05$
- (ii) $x \ge 1.5$ as critical region?
- (e) Let x_1, x_2,x_n be a random sample from a distribution with p.d.f.

$$f(x,\theta) = e^{-(x-\theta)}, \theta < x < \infty$$

$$-\infty < \theta < \infty$$

Obtain a sufficient statistic for θ .

for

- Answer any three questions from the following: 10×3=30
- What do you mean by MP and UMP test is necessarily unbiased. tests? Show that the most powerful
- State the Cramer-Rao inequality. What C-R inequality ? Show that, are the conditions for equality sign H

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

in random sampling from

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} \exp(-x/\theta), 0 < x < \infty \\ 0, \end{cases}$$
 elsewhere

- prove the sufficient condition Define consistent estimator. State and
- Show that with the help of example,
- an MLE may not exist.

- What is likelihood ratio test? that likelihood ratio test for testing the the variances of two normal population is usual F-test.
- Describe the method of moments for estimating parameter.
- Show that in sampling from Cauchy population,

$$f(x,\theta) = \frac{1}{\pi[1+(x-\theta)^2]}, -\infty < x < \infty$$

is not sample mean, but sample median is a consistent estimator