3 (Sem-4/CBCS) PHY HC 3

2021

PHYSICS

(Honours)

Paper: PHY-HC-4036

(Analog Systems and Applications)

Full Marks: 60

GROUP-A

(Marks: 30)

- 1. *(a)* Write down the value of Ripple factor of a Bridge Rectifier.
 - (b) What is the full form of LCD?

Contd.

- (c) Write the expression for α (Current gain) in CB mode.
- (d) In Class B amplifier, where is the Q point located?

(e)	Define voltage gain in decibel for	an	RC
	coupled Amplifier.		1

- 2. *(a)* What is the difference between diffusion and drift process in a *pn* junction? 2
 - (b) What is a Fermi level? Where is it located in the case of pure semiconductor energy band diagram?
 - (c) What is a Zener diode? Write an application of a Zener diode.
 - (d) What are the disadvantages of a Half-wave Rectifier?
 - (e) Why is Self-bias method preferred?

3. (a) What is a load line? How is a load line plotted? What is the significance of points of intersection of a load line with the curves of output characteristics of a BJT?

Or

Calculate I_E and I_C of a CB circuit for which $\alpha = 0.96$ and $I_B = 50 \mu A$.

(b) Draw a circuit diagram to explain the working of a class A amplifier. 5

Or

Draw a fixed bias circuit diagram and derive an expression for its stability factor.

(c) Explain the frequency response curve of an R-C coupled Amplifier. 5

GROUP-B

(Marks: 30)

4. *(a)* Obtain Diode equation expressing I-V characteristics of a *pn* junction diode.

10

Explain with the help of a circuit diagram the working of a L-section filter with full-wave Rectifier. Show that the Ripple factor is independent of load resistance.

- (b) Determine Current gain, Input resistance, Voltage gain, Output resistance and Power gain of a CE transistor Amplifier in terms of hparameter.
- (c) Write short notes on: (any two) 10
 - (i) LED
 - (ii) Π Section Filter
 - (iii) Class C Amplifier