PHYSICS

(Honours)

Paper: PHY-HC-4026

(Elements of Modern Physics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

GROUP-A

- 1. Choose the correct option: 5
 - (i) The momentum of a photon of energy E is:
 - (a) E/c
 - (b) E^2/c

Contd.

- (c) c/E^2
- (d) Ec
- (ii) The Schrödinger equation contains:
 - (a) First-order time derivative
 - (b) First-order space derivative
 - (c) Second-order time derivative
 - (d) Third-order time derivative
- (iii) What is the transmission coefficient for a particle incident on a step potential with energy greater than step height?
 - (a) 1
 - (b) <1
 - (c) 0
 - (d) infinite
- (iv) Which combinations of radioactive emissions will not change the mass number of radioactive nuclei?

- (iv) Which combinations of radioactive emissions will not change the mass number of radioactive nuclei?
 - (a) Alpha and beta decays
 - (b) Alpha and gamma decays
 - (c) Beta and gamma decays
 - (d) Alpha, beta and gamma decays
- 3 (Sem-4/CBCS) PHY HC 3/G 2
 - (v) What process creates energy in the Sun?
 - (a) Fission
 - (b) Gamma emission
 - (c) Fusion
 - (d) Electro-magnetic interaction
- 2. Answer the following question: $2 \times 5 = 10$
 - (a) Find the de Broglie wavelength of an electron having kinetic energy of 1 Mev.
 - (b) What is the physical significance of a wave function?
 - (c) What is tunneling in Quantum mechanics? Give one example.

- (d) Show that nuclear density is independent of mass number.
- (e) If the loss in mass during a fission is 0.01 gm, how much energy in Mev will be produced?

3 (Sem-4/CBCS) PHY HC 3/G 3

Contd.

- 3. Answer **any three** questions from the following: 5×3=15
 - (a) Derive Heisenberg's Uncertainty principle from wave packets.
 - (b) Explain normalization of a wave function. How is normalization expressed mathematically?
 - (c) Define Commutator. Show that position and momentum operator do not commute.
 - (d) Explain the process of gamma emission.
 - (e) Explain the working of nuclear reactor.

GROUP-B

- 4. Answer **any three** questions from the following: 10×3=30
 - (a) What are phase velocity and group velocity? Deduce the expression of phase velocity and group velocity and hence derive the relation between these two velocities. 2+3+3+2
 - (b) Solve the Schrödinger equation for a free particle in a one-dimensional infinitely rigid box and obtain the eigenfunctions and corresponding eigenvalues.
 - (c) Express the binding energy of a nucleus according to the semi-empirical mass formula and explain each term involved in the expression.
 - (d) Explain the nature of beta particle spectrum. How Pauli's neutrino hypothesis able to explain the conservation laws of energy and linear momentum?

 4+6
 - (e) Explain the terms optical pumping and population inversion. Explain the three- level pumping LASERS and mention *two* drawbacks of this type of LASERS. 2+2+4+2