Total number of printed pages-o

3 (Sem-4/CBCS) PHY HC 1

2021

PHYSICS

(Honours)

Paper: PHY-HC-4016

<u>'™</u>athematical Physics – III)

Full Marks: 60

GROUP-A

(Full Marks: 30)

- 1. Answer the following questions: $1 \times 5 = 5$
 - (a) Write the polar form of a complex number.
 - (b) State Convolution theorem on Fourier transform.

Contd.

- (c) Prove $L(1) = \frac{1}{s}$, s > 0, using the definition of Laplace transform.
- (d) Find the Residue of the complex function $f(z) = \frac{1}{1+z^2}$ at the pole z = i.
- (e) Write the law of transformation for the tensor A_n^{lm} .

2. Answer the following questions: $2\times5=10$

(a) Find the modulus and argument of -3i.

(b) Check whether the function f(Z) = ReZ is analytic or not.

(c) Write the Fourier's sine and cosine transform.

(d) If $L[f(x)] = \bar{f}(s)$, then show that $L[e^{ax}f(x)] = \bar{f}(s-a)$.

(e) Prove that a symmetric tensor of rank 2 in N dimensional space has $\frac{N(N+1)}{2}$ independent elements.

3 (Sem-4/CBCS) PHY HC1/G 2

3. Answer **any three** of the following questions: $5 \times 3 = 15$

(a) Prove the Cauchy's integral formula —

$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - a} dz$$

(b) Using Cauchy's residue theorem, show that —

$$\int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}$$

(c) Find the Fourier transform of the function —

$$f(x) = \begin{cases} 1, & \text{for } |x| < a \\ 0, & \text{for } |x| > a \end{cases}$$

(d) Find the Laplace transform of f(t), where,

$$f(t) = \begin{cases} \sin t, & 0 < t < \pi \\ 0, & t > \pi \end{cases}$$

(e) What is Kronecker delta? Show that it is a mixed tensor of rank 2.

3 (Sem-4/CBCS) PHY HC1/G 3

Contd

GROUP-B

(Full Marks: 30)

- 4. Answer any three of the following questions:
 - (a) (i) Obtain the Cauchy-Reimann conditions for the function f(z) = u + iv to be analytic, in a domain, u and v are functions of x and y. Are the conditions sufficient? 6+1=7

(ii) Expand the following function in Taylor series :

$$f(z) = \frac{1}{z+1}$$
, about $z = 1$.

(b) Evaluate the following integrals using calculus of residues: 5×2=10

(i)
$$\int_{-\infty}^{+\infty} \frac{\sin x}{x} dx$$

(ii)
$$\int_0^{2\pi} \frac{d\theta}{5 - 4\sin\theta}$$

(c) Using Fourier transform, solve the onedimensional heat flow equation

$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2}, \ x > 0, \ t > 0, \text{ subject to}$$

the conditions -

(i)
$$u(0,t)=0$$

(ii)
$$u(x,0) = \begin{cases} 1, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$$

(iii) u(x,t) is bounded.

(d) Evaluate the following inverse Laplace transforms – 4+6=10

(i)
$$L^{-1}\left[\frac{s^2}{(s+1)^2}\right]$$

(ii)
$$L^{-1} \left[\frac{4P+5}{(P-4)^2(P+3)} \right]$$

(e) (i) What is Levi-Civita tensor? Prove that $\delta_{ij} \in_{ijk} = 0$. 2+1=3

(ii) Prove that

$$\vec{A} \cdot \vec{B} = \sum_{i=1}^{3} \sum_{j=1}^{3} A_i B_j \delta_{ij}$$
.

3 (Sem-4/CBCS) PHY HC1/G 5

Contd.

(iii) Prove that tensor of rank 2 could be written as a sum of symmetric and asymmetric tensor. 4